Curriculum learning for data-driven modeling of dynamical systems
被引:6
|
作者:
Bucci, Michele Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
Bucci, Michele Alessandro
[1
]
Semeraro, Onofrio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, FranceUniv Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
Semeraro, Onofrio
[2
]
Allauzen, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 09, LAMSADE, Pl Marechal Lattre Tassigny, F-75016 Paris, FranceUniv Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
Allauzen, Alexandre
[3
]
Chibbaro, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, FranceUniv Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
Chibbaro, Sergio
[2
]
Mathelin, Lionel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, FranceUniv Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
Mathelin, Lionel
[2
]
机构:
[1] Univ Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
[2] Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, France
[3] Univ Paris 09, LAMSADE, Pl Marechal Lattre Tassigny, F-75016 Paris, France
The reliable prediction of the temporal behavior of complex systems is key in numerous scientific fields. This strong interest is however hindered by modeling issues: Often, the governing equations describing the physics of the system under consideration are not accessible or, when known, their solution might require a computational time incompatible with the prediction time constraints. Not surprisingly, approximating complex systems in a generic functional format and informing it ex-nihilo from available observations has become common practice in the age of machine learning, as illustrated by the numerous successful examples based on deep neural networks. However, generalizability of the models, margins of guarantee and the impact of data are often overlooked or examined mainly by relying on prior knowledge of the physics. We tackle these issues from a different viewpoint, by adopting a curriculum learning strategy. In curriculum learning, the dataset is structured such that the training process starts from simple samples toward more complex ones in order to favor convergence and generalization. The concept has been developed and successfully applied in robotics and control of systems. Here, we apply this concept for the learning of complex dynamical systems in a systematic way. First, leveraging insights from the ergodic theory, we assess the amount of data sufficient for a-priori guaranteeing a faithful model of the physical system and thoroughly investigate the impact of the training set and its structure on the quality of long-term predictions. Based on that, we consider entropy as a metric of complexity of the dataset; we show how an informed design of the training set based on the analysis of the entropy significantly improves the resulting models in terms of generalizability and provide insights on the amount and the choice of data required for an effective data-driven modeling.
机构:
Nanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R ChinaNanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R China
Li, Yang
Xu, Shengyuan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R ChinaNanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R China
Xu, Shengyuan
Duan, Jinqiao
论文数: 0引用数: 0
h-index: 0
机构:
Great Bay Univ, Dept Math, Dongguan 523000, Guangdong, Peoples R China
Great Bay Univ, Dept Phys, Dongguan 523000, Guangdong, Peoples R ChinaNanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R China
Duan, Jinqiao
Huang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Sci & Technol, Sch Energy & Power Engn, 200 Xiaolingwei St, Nanjing 210094, Peoples R ChinaNanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R China
Huang, Yong
Liu, Xianbin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, State Key Lab Mech & Control Mech Struct, 29 Yudao St, Nanjing 210016, Peoples R ChinaNanjing Univ Sci & Technol, Sch Automat, 200 Xiaolingwei St, Nanjing 210094, Peoples R China
机构:
Univ Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USAUniv Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USA
Troutman, Sara C.
Schambach, Nathaniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Mech Engn, GG Brown Lab, 2350 Hayward St, Ann Arbor, MI 48109 USAUniv Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USA
Schambach, Nathaniel
Love, Nancy G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USAUniv Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USA
Love, Nancy G.
Kerkez, Branko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USAUniv Michigan, Civil & Environm Engn, 2350 Hayward St,GG Brown Bldg, Ann Arbor, MI 48109 USA