Curriculum learning for data-driven modeling of dynamical systems

被引:6
|
作者
Bucci, Michele Alessandro [1 ]
Semeraro, Onofrio [2 ]
Allauzen, Alexandre [3 ]
Chibbaro, Sergio [2 ]
Mathelin, Lionel [2 ]
机构
[1] Univ Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
[2] Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, France
[3] Univ Paris 09, LAMSADE, Pl Marechal Lattre Tassigny, F-75016 Paris, France
关键词
NEURAL-NETWORKS; IDENTIFICATION; LAWS;
D O I
10.1140/epje/s10189-023-00269-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reliable prediction of the temporal behavior of complex systems is key in numerous scientific fields. This strong interest is however hindered by modeling issues: Often, the governing equations describing the physics of the system under consideration are not accessible or, when known, their solution might require a computational time incompatible with the prediction time constraints. Not surprisingly, approximating complex systems in a generic functional format and informing it ex-nihilo from available observations has become common practice in the age of machine learning, as illustrated by the numerous successful examples based on deep neural networks. However, generalizability of the models, margins of guarantee and the impact of data are often overlooked or examined mainly by relying on prior knowledge of the physics. We tackle these issues from a different viewpoint, by adopting a curriculum learning strategy. In curriculum learning, the dataset is structured such that the training process starts from simple samples toward more complex ones in order to favor convergence and generalization. The concept has been developed and successfully applied in robotics and control of systems. Here, we apply this concept for the learning of complex dynamical systems in a systematic way. First, leveraging insights from the ergodic theory, we assess the amount of data sufficient for a-priori guaranteeing a faithful model of the physical system and thoroughly investigate the impact of the training set and its structure on the quality of long-term predictions. Based on that, we consider entropy as a metric of complexity of the dataset; we show how an informed design of the training set based on the analysis of the entropy significantly improves the resulting models in terms of generalizability and provide insights on the amount and the choice of data required for an effective data-driven modeling.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Data-Driven Modeling of Switched Dynamical Systems via Extreme Learning Machine
    Xiang, Weiming
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 852 - 857
  • [2] A data-driven framework for learning hybrid dynamical systems
    Li, Yang
    Xu, Shengyuan
    Duan, Jinqiao
    Huang, Yong
    Liu, Xianbin
    CHAOS, 2023, 33 (06)
  • [3] Efficient Data-Driven Modeling of Nonlinear Dynamical Systems via Metalearning
    Li, Shanwu
    Yang, Yongchao
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (03)
  • [4] An automated toolchain for the data-driven and dynamical modeling of combined sewer systems
    Troutman, Sara C.
    Schambach, Nathaniel
    Love, Nancy G.
    Kerkez, Branko
    WATER RESEARCH, 2017, 126 : 88 - 100
  • [5] Data-driven modeling of bifurcation systems by learning the bifurcation parameter generalization
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR DYNAMICS, 2025, 113 (02) : 1163 - 1174
  • [6] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129
  • [7] Fast data-driven model reduction for nonlinear dynamical systems
    Axas, Joar
    Cenedese, Mattia
    Haller, George
    NONLINEAR DYNAMICS, 2023, 111 (09) : 7941 - 7957
  • [8] PiSL: Physics-informed Spline Learning for data-driven identification of nonlinear dynamical systems
    Sun, Fangzheng
    Liu, Yang
    Wang, Qi
    Sun, Hao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [9] Automated data-driven modeling of building energy systems via machine learning algorithms
    Raetz, Martin
    Javadi, Amir Pasha
    Baranski, Marc
    Finkbeiner, Konstantin
    Mueller, Dirk
    ENERGY AND BUILDINGS, 2019, 202
  • [10] Deep learning algorithm for data-driven simulation of noisy dynamical system
    Yeo, Kyongmin
    Melnyk, Igor
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 1212 - 1231