MSIF: Multi-source information fusion based on information sets

被引:3
|
作者
Yang, Feifei [1 ]
Zhang, Pengfei [2 ]
机构
[1] Guangxi Univ Finance & Econ, Sch Sci Res Off, Nanning, Peoples R China
[2] Southwest JiaoTong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Sichuan, Peoples R China
关键词
Multi-source information fusion; information sets; Shannon entropy; uncertainty; fuzzy membership degree; ROUGH SETS; UNCERTAINTY; MODEL;
D O I
10.3233/JIFS-222210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-source information fusion is a sophisticated estimating technique that enables users to analyze more precisely complex situations by successfully merging key evidence in the vast, varied, and occasionally contradictory data obtained from various sources. Restricted by the data collection technology and incomplete data of information sources, it may lead to large uncertainty in the fusion process and affect the quality of fusion. Reducing uncertainty in the fusion process is one of the most important challenges for information fusion. In view of this, a multi-source information fusion method based on information sets (MSIF) is proposed in this paper. The information set is a new method for the representation of granularized information source values using the entropy framework in the possibilistic domain. First, four types of common membership functions are used to construct the possibilistic domain as the information gain function (or agent). Then, Shannon agent entropy and Shannon inverse agent entropy are defined, and their summation is used to evaluate the total uncertainty of the attribute values and agents. Finally, an MSIF algorithm is designed by infimum-measure approach. The experimental results show that the performance of Gaussian kernel function is good, which provides an effective method for fusing multi-source numerical data.
引用
收藏
页码:4103 / 4112
页数:10
相关论文
共 50 条
  • [31] A conflict resolution algorithm of multi-source information fusion for Internet of things
    Pei Qiugen
    Xie Wenyan
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 118 - 121
  • [32] Multi-label feature selection based on information entropy fusion in multi-source decision system
    Qian, Wenbin
    Yu, Sudan
    Yang, Jun
    Wang, Yinglong
    Zhang, Jihao
    EVOLUTIONARY INTELLIGENCE, 2020, 13 (02) : 255 - 268
  • [33] Fractal belief Jensen-Shannon divergence-based multi-source information fusion for pattern classification
    Huang, Yingcheng
    Xiao, Fuyuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [34] Remaining useful life prediction based on multi-source information fusion and HMM
    Huang L.
    Gong L.
    Jiang W.
    Wang K.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (05): : 1747 - 1756
  • [35] Surface topography of cylindrical precision grinding based on multi-source information fusion
    Hu, Lai
    Zhang, Hua
    Zha, Jun
    Chen, Yaolong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, : 2894 - 2907
  • [36] Autonomous Localization Method for Railway Trains Based on Multi-Source Information Fusion
    Zhang, Hanxuan
    Huo, Ju
    Xue, Muyao
    Zhou, Jianbao
    2024 INTERNATIONAL CONFERENCE ON ELECTRONIC ENGINEERING AND INFORMATION SYSTEMS, EEISS 2024, 2024, : 41 - 46
  • [37] Risk assessment approach for tunnel collapse based on improved multi-source evidence information fusion
    Huang, Rui
    Liu, Baoguo
    Sun, Jinglai
    Song, Yu
    Yu, Mingyuan
    Deng, Tingbang
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (01)
  • [38] Research On E-Government system based on Multi-source Information Fusion
    Wang, Ying
    Sun, Jieli
    Lin, Tianhua
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 2345 - 2348
  • [39] Multi-Source Information Fusion Based on Neural Networks in Air Quality Forecasting
    Zhao, Xiaoqiang
    Chen, Yubing
    Gao, Qiang
    Deng, Dan
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION ENGINEERING (ECAE 2017), 2017, 140 : 164 - 168
  • [40] The DMF: Fault Diagnosis of Diaphragm Pumps Based on Deep Learning and Multi-Source Information Fusion
    Meng, Fanguang
    Shi, Zhiguo
    Song, Yongxing
    PROCESSES, 2024, 12 (03)