Brain-Inspired Spatio-Temporal Associative Memories for Neuroimaging Data Classification: EEG and fMRI

被引:2
|
作者
Kasabov, Nikola K. [1 ,2 ,3 ,4 ,5 ,6 ]
Bahrami, Helena [1 ,7 ,8 ,9 ]
Doborjeh, Maryam [1 ]
Wang, Alan [5 ,10 ,11 ]
Zhang, Nanyin
Boubchir, Larbi
机构
[1] Auckland Univ Technol, Sch Engn Comp & Math Sci, Knowledge Engn & Discovery Res Innovat, Auckland 1010, New Zealand
[2] Univ Ulster, Intelligent Syst Res Ctr, Londonderry BT48 7JL, North Ireland
[3] Bulgarian Acad Sci, Inst Informat & Commun Technol, Sofia 1113, Bulgaria
[4] Dalian Univ, Comp Sci & Engn Dept, Dalian 116622, Peoples R China
[5] Univ Auckland, Auckland Bioengn Inst, Auckland 1010, New Zealand
[6] Knowledge Engn Consulting Ltd, Auckland 1071, New Zealand
[7] Wine Searcher, Core & Innovat, Auckland 0640, New Zealand
[8] Royal Soc Te Aparangi, Wellington, New Zealand
[9] Res Assoc New Zealand RANZ, Auckland 1010, New Zealand
[10] Univ Auckland, Fac Med & Hlth Sci, Auckland 1010, New Zealand
[11] Univ Auckland, Ctr Brain Res, Auckland 1010, New Zealand
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 12期
关键词
spatio-temporal associative memory; STAM; neuroimaging data; spiking neural networks; NeuCube; EEG; fMRI; neuroimage classification;
D O I
10.3390/bioengineering10121341
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Humans learn from a lot of information sources to make decisions. Once this information is learned in the brain, spatio-temporal associations are made, connecting all these sources (variables) in space and time represented as brain connectivity. In reality, to make a decision, we usually have only part of the information, either as a limited number of variables, limited time to make the decision, or both. The brain functions as a spatio-temporal associative memory. Inspired by the ability of the human brain, a brain-inspired spatio-temporal associative memory was proposed earlier that utilized the NeuCube brain-inspired spiking neural network framework. Here we applied the STAM framework to develop STAM for neuroimaging data, on the cases of EEG and fMRI, resulting in STAM-EEG and STAM-fMRI. This paper showed that once a NeuCube STAM classification model was trained on a complete spatio-temporal EEG or fMRI data, it could be recalled using only part of the time series, or/and only part of the used variables. We evaluated both temporal and spatial association and generalization accuracy accordingly. This was a pilot study that opens the field for the development of classification systems on other neuroimaging data, such as longitudinal MRI data, trained on complete data but recalled on partial data. Future research includes STAM that will work on data, collected across different settings, in different labs and clinics, that may vary in terms of the variables and time of data collection, along with other parameters. The proposed STAM will be further investigated for early diagnosis and prognosis of brain conditions and for diagnostic/prognostic marker discovery.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Modified Spatio-Temporal Matched Filtering for Brain Responses Classification
    Kotas, Marian P.
    Piela, Michal
    Contreras-Ortiz, Sonia H.
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (04) : 677 - 686
  • [42] Classification of functional brain images with a spatio-temporal dissimilarity map
    Shinkareva, Svetlana V.
    Ombao, Hernando C.
    Sutton, Bradley P.
    Mohanty, Aprajita
    Miller, Gregory A.
    NEUROIMAGE, 2006, 33 (01) : 63 - 71
  • [43] A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data
    Guillaume Crevecoeur
    Hans Hallez
    Peter Van Hese
    Yves D’Asseler
    Luc Dupré
    Rik Van de Walle
    Medical & Biological Engineering & Computing, 2008, 46 : 767 - 777
  • [44] A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data
    Crevecoeur, Guillaume
    Hallez, Hans
    Van Hese, Peter
    D'Asseler, Yves
    Dupre, Luc
    Van De Walle, Rik
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (08) : 767 - 777
  • [45] Spatio-temporal modeling of neural source activation from EEG data
    Albu, Alexandra Branzan
    Mahajan, Sunny Vardhan
    Zeman, Philip M.
    Tanaka, James W.
    2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 1014 - 1017
  • [46] Classification of Gaussian spatio-temporal data with stationary separable covariances
    Karaliute, Marta
    Ducinskas, Kestutis
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 363 - 374
  • [47] Spatio-temporal trajectory data modeling for fishing gear classification
    Rodriguez-Albala, Juan Manuel
    Pena, Alejandro
    Melzi, Pietro
    Morales, Aythami
    Tolosana, Ruben
    Fierrez, Julian
    Vera-Rodriguez, Ruben
    Ortega-Garcia, Javier
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [48] Uncovering the spatio-temporal dynamics of value-based decision-making in the human brain: a combined fMRI - EEG study
    Larsen, Tobias
    O'Doherty, John P.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1655)
  • [49] Spatio-temporal modeling and analysis of fMRI data using NARX neural network
    Luo, Huaien
    Puthusserypady, Sadasivan
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 139 - 149
  • [50] Deep Spatio-Temporal Method for ADHD Classification Using Resting-State fMRI
    Niu, Yuan
    Huang, Feihu
    Zhou, Hui
    Peng, Jian
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 1082 - 1087