Review of machine learning and deep learning models for toxicity prediction

被引:22
|
作者
Guo, Wenjing [1 ]
Liu, Jie [1 ]
Dong, Fan [1 ]
Song, Meng [1 ]
Li, Zoe [1 ]
Khan, Md Kamrul Hasan [1 ]
Patterson, Tucker A. [1 ]
Hong, Huixiao [1 ]
机构
[1] US FDA, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA
关键词
Toxicity; machine learning; deep learning; model; dataset; data quality; INDUCED LIVER-INJURY; IN-SILICO PREDICTION; POTASSIUM CHANNEL BLOCKAGE; DEVELOPMENTAL TOXICITY; CHEMICAL CARCINOGENICITY; REPRODUCTIVE TOXICITY; CLASSIFICATION MODELS; ESTROGENIC ACTIVITY; NEURAL-NETWORK; DRUG;
D O I
10.1177/15353702231209421
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The ever-increasing number of chemicals has raised public concerns due to their adverse effects on human health and the environment. To protect public health and the environment, it is critical to assess the toxicity of these chemicals. Traditional in vitro and in vivo toxicity assays are complicated, costly, and time-consuming and may face ethical issues. These constraints raise the need for alternative methods for assessing the toxicity of chemicals. Recently, due to the advancement of machine learning algorithms and the increase in computational power, many toxicity prediction models have been developed using various machine learning and deep learning algorithms such as support vector machine, random forest, k-nearest neighbors, ensemble learning, and deep neural network. This review summarizes the machine learning- and deep learning-based toxicity prediction models developed in recent years. Support vector machine and random forest are the most popular machine learning algorithms, and hepatotoxicity, cardiotoxicity, and carcinogenicity are the frequently modeled toxicity endpoints in predictive toxicology. It is known that datasets impact model performance. The quality of datasets used in the development of toxicity prediction models using machine learning and deep learning is vital to the performance of the developed models. The different toxicity assignments for the same chemicals among different datasets of the same type of toxicity have been observed, indicating benchmarking datasets is needed for developing reliable toxicity prediction models using machine learning and deep learning algorithms. This review provides insights into current machine learning models in predictive toxicology, which are expected to promote the development and application of toxicity prediction models in the future.
引用
收藏
页码:1952 / 1973
页数:22
相关论文
共 50 条
  • [41] A review on machine learning methods for in silico toxicity prediction
    Idakwo, Gabriel
    Luttrell, Joseph
    Chen, Minjun
    Hong, Huixiao
    Zhou, Zhaoxian
    Gong, Ping
    Zhang, Chaoyang
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2018, 36 (04) : 169 - 191
  • [42] An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms
    Sinnaswamy, Renugadevi Ammapalayam
    Palanisamy, Natesan
    Subramaniam, Kavitha
    Muthusamy, Suresh
    Lamba, Ravita
    Sekaran, Sreejith
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 131 (03) : 2055 - 2080
  • [43] Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review
    Poursaeed, Roya
    Mohammadzadeh, Mohsen
    Safaei, Ali Asghar
    BMC CANCER, 2024, 24 (01)
  • [44] Machine learning and deep learning algorithms in stroke medicine: a systematic review of hemorrhagic transformation prediction models
    Issaiy, Mahbod
    Zarei, Diana
    Kolahi, Shahriar
    Liebeskind, David S.
    JOURNAL OF NEUROLOGY, 2025, 272 (01)
  • [45] A Systematic Review on Machine Learning and Deep Learning Based Predictive Models for Health Informatics
    Aloyuni, Saleh Abdullah
    JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2021, 33 (47B) : 183 - 194
  • [46] Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
    Fregoso-Aparicio, Luis
    Noguez, Julieta
    Montesinos, Luis
    Garcia-Garcia, Jose A.
    DIABETOLOGY & METABOLIC SYNDROME, 2021, 13 (01)
  • [47] Predictive models for concrete properties using machine learning and deep learning approaches: A review
    Moein, Mohammad Mohtasham
    Saradar, Ashkan
    Rahmati, Komeil
    Mousavinejad, Seyed Hosein Ghasemzadeh
    Bristow, James
    Aramali, Vartenie
    Karakouzian, Moses
    JOURNAL OF BUILDING ENGINEERING, 2023, 63
  • [48] Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
    Luis Fregoso-Aparicio
    Julieta Noguez
    Luis Montesinos
    José A. García-García
    Diabetology & Metabolic Syndrome, 13
  • [49] An Introductory Review of Deep Learning for Prediction Models With Big Data
    Emmert-Streib, Frank
    Yang, Zhen
    Feng, Han
    Tripathi, Shailesh
    Dehmer, Matthias
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [50] Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models
    Moulaei, Khadijeh
    Afshari, Lida
    Moulaei, Reza
    Sabet, Babak
    Mousavi, Seyed Mohammad
    Afrash, Mohammad Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):