A fault diagnosis method for rolling bearings based on graph neural network with one-shot learning

被引:6
|
作者
Gao, Yan [1 ]
Wu, Haowei [1 ]
Liao, Haiqian [1 ]
Chen, Xu [2 ]
Yang, Shuai [3 ]
Song, Heng [4 ]
机构
[1] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[2] Chongqing Technol & Business Univ, Sch Management Sci & Engn, Chongqing 400067, Peoples R China
[3] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing 400067, Peoples R China
[4] China Railway Engn Grp 4, Inst Management Res, Shanghai 201600, Peoples R China
关键词
Deep learning; Fault diagnosis; Graph neural network; One-shot learning; Rotating machinery; TRANSFORM; SYSTEM;
D O I
10.1186/s13634-023-01063-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The manuscript proposes a fault diagnosis method based on graph neural network (GNN) with one-shot learning to effectively diagnose rolling bearings under variable operating conditions. In this proposed method, the convolutional neural network is utilized for feature extraction, reducing loss in the process. Subsequently, GNN applies an adjacency matrix to generate codes for one-shot learning. Experimental verification is conducted using open data from Case Western Reserve University Rolling Bearing Data Center, where four different working conditions with six types of typical faults are selected as input signals. The classification accuracy of the proposed method reaches 98.02%. To further validate its effectiveness, traditional single-learning neural networks such as Siamese, Matching Net, Prototypical Net and (Stacked Auto Encoder) SAE are introduced as comparisons. Simulation results that the proposed method outperforms all chosen methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network
    Jian, Xianzhong
    Li, Wenlong
    Guo, Xuguang
    Wang, Ruzhi
    SENSORS, 2019, 19 (01)
  • [22] Application of Multi-Dimension Input Convolutional Neural Network in Fault Diagnosis of Rolling Bearings
    Zan, Tao
    Wang, Hui
    Wang, Min
    Liu, Zhihao
    Gao, Xiangsheng
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [23] One-Shot Fault Diagnosis of Three-Dimensional Printers Through Improved Feature Space Learning
    Li, Chuan
    Cabrera, Diego
    Sancho, Fernando
    Sanchez, Rene-Vinicio
    Cerrada, Mariela
    de Oliveira, Jose Valente
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (09) : 8768 - 8776
  • [24] Intelligent Fault Diagnosis of Rolling Element Bearings Based on HHT and CNN
    Yuan, Zhuang
    Zhang, Laibin
    Duan, Lixiang
    Li, Tao
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 292 - 296
  • [25] A fault diagnosis method for rolling element bearings based on ICEEMDAN and Bayesian network
    Zengkai Liu
    Kanglei Lv
    Chao Zheng
    Baoping Cai
    Gang Lei
    Yonghong Liu
    Journal of Mechanical Science and Technology, 2022, 36 : 2201 - 2212
  • [26] A Mathematical Morphological Network Fault Diagnosis Method for Rolling Bearings Based on Acoustic Array Signal
    Luo, Yuanqing
    Yang, Yingyu
    Kang, Shuang
    Tian, Xueyong
    Kang, Xiaoqi
    Sun, Feng
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [27] Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning
    Li, Jialin
    Cao, Xuan
    Chen, Renxiang
    Zhang, Xia
    Huang, Xianzhen
    Qu, Yongzhi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 202
  • [28] One-shot learning based on improved matching network
    Jiang L.
    Zhou X.
    Jiang F.
    Che L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (06): : 1210 - 1217
  • [29] A fault diagnosis model for rolling bearings based on a multi-input layer convolutional neural network
    Zan T.
    Wang H.
    Liu Z.
    Wang M.
    Gao X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (12): : 142 - 149and163
  • [30] A New Interpretable Learning Method for Fault Diagnosis of Rolling Bearings
    Zhang, Dan
    Chen, Yongyi
    Guo, Fanghong
    Karimi, Hamid Reza
    Dong, Hui
    Xuan, Qi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70