Development of prediction model to estimate future risk of ovarian lesions: A multi-center retrospective study

被引:3
作者
Jing, Bilin [1 ]
Chen, Gaowen [1 ]
Yang, Miner [2 ]
Zhang, Zhi [3 ]
Zhang, Yue [4 ]
Zhang, Jingyao [4 ]
Xie, Juncheng [4 ]
Hou, Wenjie [5 ]
Xie, Yong [6 ]
Huang, Yi [7 ]
Zhao, Lijie [8 ]
Yuan, Hua [9 ]
Liao, Weilin [3 ]
Wang, Yifeng [1 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Guangzhou 510280, Peoples R China
[2] Guangzhou Women & Childrens Med Ctr, Guangzhou 510620, Peoples R China
[3] Geog & Planning Sun Yat Sen Univ, Guangzhou 510275, Peoples R China
[4] Second Clin Coll, Guangzhou 510515, Peoples R China
[5] Soochow Univ Med Ctr, Dept Stomatol, Suzhou 215125, Peoples R China
[6] Foshan First Peoples Hosp, Foshan 528010, Peoples R China
[7] Nanhai Dist Peoples Hosp, Foshan 528099, Peoples R China
[8] Foshan Maternal & Child Hlth Hosp, Foshan 528099, Peoples R China
[9] Wuxi Maternal & Child Hlth Hosp, Wuxi 214002, Peoples R China
关键词
Ovarian Disease; Lasso Regression; Machine Learning; Disease Prediction; AUC; CANCER; CA125; INDEX; STAGE;
D O I
10.1016/j.pmedr.2023.102296
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: To develop the preoperative prediction of ovarian lesions using regression-based statistics analyses and machine learning methods based on multiple serological biomarkers in China.Methods: 1137 patients with ovarian lesions in Zhujiang Hospital and 518 patients in others hospital in China were randomly assigned to training, test and external validation cohorts. Five machine learning classifiers, including Random Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Classifier (SVC), K-nearest Neighbor (KN), Multi-Layer Perceptron (MLP) and the Lasso-Logistics prediction model (LLRM) were used to derive diagnostic information from 23 predictors.Results: The RF model had a high diagnostic value (AUC = 0.968) in predicting benign and malignant ovarian disease. Age and MLR were also potential diagnostic indicators for predicting ovarian disease except tumor indicators. The RF model well distinguished borderline ovarian tumors (AUC = 0.742). The RFM had a high predictive power to identify ovarian serous adenocarcinoma (AUC = 0.943) and ovarian endometriosis cysts (AUC = 0.914).Conclusions: The RF models can effectively predict adnexal lesions, promising to be adjuncts to the preoperative prediction of ovarian cancer.
引用
收藏
页数:9
相关论文
共 30 条
  • [1] Impact of perioperative red blood cell transfusion, anemia of cancer and global health status on the prognosis of elderly patients with endometrial and ovarian cancer
    Anic, Katharina
    Schmidt, Mona Wanda
    Schmidt, Marcus
    Krajnak, Slavomir
    Lowe, Amelie
    Linz, Valerie Catherine
    Schwab, Roxana
    Weikel, Wolfgang
    Brenner, Walburgis
    Westphalen, Christiane
    Rissel, Rene
    Hartmann, Erik Kristoffer
    Conradi, Roland
    Hasenburg, Annette
    Battista, Marco Johannes
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [2] Inflammation and cancer: back to Virchow?
    Balkwill, F
    Mantovani, A
    [J]. LANCET, 2001, 357 (9255) : 539 - 545
  • [3] Cai Zhenzhen Z.J, 2021, INT J LAB MED, V42, P2999
  • [4] Elevated platelet lymphocyte ratio is a poor prognostic factor in advanced epithelial ovarian cancer
    Chon, Seungjoo
    Lee, Seungho
    Jeong, Dahoe
    Lim, Soyi
    Lee, Kwangbeom
    Shin, Jinwoo
    [J]. JOURNAL OF GYNECOLOGY OBSTETRICS AND HUMAN REPRODUCTION, 2021, 50 (06)
  • [5] Chunfang D.u, 2013, MODERN ONCOLOGY MED, V21, P2866
  • [6] Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review
    Dochez, Vincent
    Caillon, Helene
    Vaucel, Edouard
    Dimet, Jerome
    Winer, Norbert
    Ducarme, Guillaume
    [J]. JOURNAL OF OVARIAN RESEARCH, 2019, 12 (1)
  • [7] Development of Machine Learning Models to Predict Platinum Sensitivity of High-Grade Serous Ovarian Carcinoma
    Hwangbo, Suhyun
    Kim, Se Ik
    Kim, Ju-Hyun
    Eoh, Kyung Jin
    Lee, Chanhee
    Kim, Young Tae
    Suh, Dae-Shik
    Park, Taesung
    Song, Yong Sang
    [J]. CANCERS, 2021, 13 (08)
  • [8] Jia Jiyun HXXX, 2022, PRACTICAL J CANC, V37, P1359, DOI [10.3969/j.issn.1001-5930.2022.08.038, DOI 10.3969/J.ISSN.1001-5930.2022.08.038]
  • [9] A novel diagnostic index combining HE4, CA125 and age may improve triage of women with suspected ovarian cancer - An international multicenter study in women with an ovarian mass
    Karlsen, Mona A.
    Hogdall, Estrid V. S.
    Christensen, Ib J.
    Borgfeldt, Christer
    Kalapotharakos, Grigorios
    Zdrazilova-Dubska, Lenka
    Chovanec, Josef
    Lok, Christianne A. R.
    Stiekema, Anna
    Mutz-Dehbalaie, Irene
    Rosenthal, Adam N.
    Moore, Elizabeth K.
    Schodin, Beth A.
    Sumpaico, Walfrido W.
    Sundfeldt, Karin
    Kristjansdottir, Bjorg
    Zapardiel, Ignacio
    Hogdall, Claus K.
    [J]. GYNECOLOGIC ONCOLOGY, 2015, 138 (03) : 640 - 646
  • [10] Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers
    Kawakami, Eiryo
    Tabata, Junya
    Yanaihara, Nozomu
    Ishikawa, Tetsuo
    Koseki, Keita
    Iida, Yasushi
    Saito, Misato
    Komazaki, Hiromi
    Shapiro, Jason S.
    Goto, Chihiro
    Akiyama, Yuka
    Saito, Ryosuke
    Saito, Motoaki
    Takano, Hirokuni
    Yamada, Kyosuke
    Okamoto, Aikou
    [J]. CLINICAL CANCER RESEARCH, 2019, 25 (10) : 3006 - 3015