A Weakly Supervised Deep Learning Framework for Whole Slide Classification to Facilitate Digital Pathology in Animal Study

被引:9
作者
Bussola, Nicole [1 ]
Xu, Joshua [2 ]
Wu, Leihong [2 ]
Gorini, Lorenzo [3 ]
Zhang, Yifan [2 ]
Furlanello, Cesare [3 ]
Tong, Weida [2 ]
机构
[1] Univ Trento, Ctr Integrat Biol, I-38123 Trento, Italy
[2] US FDA, Natl Ctr Toxicol Res, Div Bioinformat & Biostat, Jefferson, AR 72079 USA
[3] HK3 Lab, I-38068 Rovereto, Italy
关键词
D O I
10.1021/acs.chemrestox.3c00058
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The pathology of animal studies is crucial for toxicityevaluationsand regulatory assessments, but the manual examination of slides bypathologists remains time-consuming and requires extensive training.One inherent challenge in this process is the interobserver variability,which can compromise the consistency and accuracy of a study. Artificialintelligence (AI) has demonstrated its ability to automate similarexaminations in clinical applications with enhanced efficiency, consistency,and accuracy. However, training AI models typically relies on costlypixel-level annotation of injured regions and is often not availablefor animal pathology. To address this, we developed the PathologAIsystem, a "weakly" supervised approach for WSI classificationin rat images without explicit lesion annotation at the pixel level.Using rat liver imaging data from the Open TG-GATEs system, PathologAIwas applied to predict necrosis of n = 816 WSIs (377controls). TG-GATEs studied 170 compounds at three dose levels (low,middle, and high) for four time points (3, 7, 14, and 28 days). PathologAIfirst preprocessed WSIs at the tile level to generate a high-levelrepresentation with a Generative Adversarial Network architecture.The prediction of liver necrosis relied on an ensemble model of 5CNN classifiers trained on 335 WSIs. The ensemble model achieved notableclassification accuracy on the holdout test set: 87% among 87 controlslides free of findings, 83% among 120 controls with spontaneous necrosis,67% among 147 treated animals with spontaneous minimal or slight necrosis,and 59% among 127 treated animals with minimal or slight necrosiscaused by the treatment. Importantly, PathologAI was able to discriminateWSIs with spontaneous necrosis from those with treatment related necrosisand discriminated mild lesion level findings (slight vs minimal) andbetween treatment dose levels. PathologAI could provide an inexpensiveand rapid screening tool to assist the digital pathology analysisin preclinical applications and general toxicological studies.
引用
收藏
页码:1321 / 1331
页数:11
相关论文
共 37 条
[1]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[2]  
[Anonymous], 2016, ICLR
[3]  
Barre-Sinoussi F, 2015, FUTUR SCI OA, V1, DOI [10.4155/FSO.15.63, 10.4155/fso.15.63]
[4]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[5]  
Bertolini M., 2023, ARXIV
[6]   Evaluating reproducibility of AI algorithms in digital pathology with DAPPER [J].
Bizzego, Andrea ;
Bussola, Nicole ;
Chierici, Marco ;
Maggio, Valerio ;
Francescatto, Margherita ;
Cima, Luca ;
Cristoforetti, Marco ;
Jurman, Giuseppe ;
Furlanello, Cesare .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (03)
[7]   Scientific and Regulatory Policy Committee Best Practices*: Recommended ("Best") Practices for Informed (Non-blinded) Versus Masked (Blinded) Microscopic Evaluation in Animal Toxicity Studies [J].
Bolon, Brad ;
Francke, Sabine ;
Rae, Jessica M. Caverly ;
Polack, Evelyne ;
Regan, Karen S. ;
McInnes, Elizabeth F. ;
Young, Jamie K. ;
Keane, Kevin ;
Perry, Rick ;
Romeike, Annette ;
Colman, Karyn ;
Jensen, Karl ;
Nakano-Ito, Kyoko ;
Galbreath, Elizabeth J. .
TOXICOLOGIC PATHOLOGY, 2022, 50 (08) :930-941
[8]  
Bussola Nicole, 2021, Pattern Recognition. ICPR 2020 International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12661), P167, DOI 10.1007/978-3-030-68763-2_13
[9]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[10]   Tox-GAN: An Artificial Intelligence Approach Alternative to Animal Studies-A Case Study With Toxicogenomics [J].
Chen, Xi ;
Roberts, Ruth ;
Tong, Weida ;
Liu, Zhichao .
TOXICOLOGICAL SCIENCES, 2022, 186 (02) :242-259