Machine learning prediction model for treatment responders in patients with primary biliary cholangitis

被引:1
作者
Kimura, Naruhiro [1 ,2 ]
Takahashi, Kazuya [1 ]
Setsu, Toru [1 ]
Goto, Shu [1 ]
Miida, Suguru [1 ]
Takeda, Nobutaka [1 ]
Kojima, Yuichi [1 ]
Arao, Yoshihisa [1 ]
Hayashi, Kazunao [1 ]
Sakai, Norihiro [1 ]
Watanabe, Yusuke [1 ]
Abe, Hiroyuki [1 ]
Kamimura, Hiroteru [1 ]
Sakamaki, Akira [1 ]
Yokoo, Takeshi [1 ]
Kamimura, Kenya [1 ]
Tsuchiya, Atsunori [1 ]
Terai, Shuji [1 ]
机构
[1] Niigata Univ, Div Gastroenterol & Hepatol, Grad Sch Med & Dent Sci, Niigata, Japan
[2] Niigata Univ, Div Gastroenterol & Hepatol, Grad Sch Med & Dent Sci, 1-757 Asahimachi Dori, Niigata, Japan
来源
JGH OPEN | 2023年 / 7卷 / 06期
关键词
machine learning; primary biliary cholangitis; treatment response; ursodeoxycholic acid; URSODEOXYCHOLIC ACID; BIOCHEMICAL RESPONSE; CIRRHOSIS; MANAGEMENT; SURVIVAL;
D O I
10.1002/jgh3.12915
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and AimTreatment response to ursodeoxycholic acid may predict the prognosis of patients with primary biliary cholangitis (PBC). Recent studies have suggested the benefits of using machine learning (ML) to forecast complex medical predictions. We aimed to predict treatment response in patients with PBC using ML and pretreatment data. MethodsWe conducted a single-center retrospective study and collected data from 194 patients with PBC who were followed up for at least 12 months after treatment initiation. Patient data were analyzed with five ML models, namely random forest, extreme gradient boosting (XGB), decision tree, naive Bayes, or logistic regression, to predict treatment response using the Paris II criteria. The established models were assessed using an out-of-sample validation. The area under the curve (AUC) was used to evaluate the efficacy of each algorithm. Overall survival and liver-related deaths were analyzed using Kaplan-Meier analysis. ResultsCompared to logistic regression (AUC = 0.595, P = 0.0219, 0.031 models), ML analyses showed significantly high AUC in the random forest (AUC = 0.84) and XGB (AUC = 0.83) models; however, the AUC was not significantly high for decision tree (AUC = 0.633) or naive Bayes (AUC = 0.584) models. Kaplan-Meier analysis showed significantly improved prognoses in patients predicted to achieve the Paris II criteria by XGB (log-rank = 0.005 and 0.007). ConclusionML algorithms could improve treatment response prediction using pretreatment data, which could lead to better prognoses. In addition, the ML model using XGB could predict the prognosis of patients before treatment initiation.
引用
收藏
页码:431 / 438
页数:8
相关论文
共 35 条
  • [1] Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy
    Asadi, Hamed
    Dowling, Richard
    Yan, Bernard
    Mitchell, Peter
    [J]. PLOS ONE, 2014, 9 (02):
  • [2] Early biochemical response to ursodeoxycholic acid predicts symptom development in patients with asymptomatic primary biliary cirrhosis
    Azemoto, Nobuaki
    Abe, Masanori
    Murata, Yosuke
    Hiasa, Yoichi
    Hamada, Maho
    Matsuura, Bunzo
    Onji, Morikazu
    [J]. JOURNAL OF GASTROENTEROLOGY, 2009, 44 (06) : 630 - 634
  • [3] Deep learning for drug response prediction in cancer
    Baptista, Delora
    Ferreira, Pedro G.
    Rocha, Miguel
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) : 360 - 379
  • [4] Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes-An In Silico Proof-of-Concept
    Cappon, Giacomo
    Facchinetti, Andrea
    Sparacino, Giovanni
    Georgiou, Pantelis
    Herrero, Pau
    [J]. SENSORS, 2019, 19 (14)
  • [5] Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score
    Carbone, Marco
    Nardi, Alessandra
    Flack, Steve
    Carpino, Guido
    Varvaropoulou, Nikoletta
    Gavrila, Caius
    Spicer, Ann
    Badrock, Jonathan
    Bernuzzi, Francesca
    Cardinale, Vincenzo
    Ainsworth, Holly F.
    Heneghan, Michael A.
    Thorburn, Douglas
    Bathgate, Andrew
    Jones, Rebecca
    Neuberger, James M.
    Battezzati, Pier Maria
    Zuin, Massimo
    Taylor-Robinson, Simon
    Donato, Maria F.
    Kirby, John
    Mitchell-Thain, Robert
    Floreani, Annarosa
    Sampaziotis, Fotios
    Muratori, Luigi
    Alvaro, Domenico
    Marzioni, Marco
    Miele, Luca
    Marra, Fabio
    Giannini, Edoardo
    Gaudio, Eugenio
    Ronca, Vincenzo
    Bonato, Giulia
    Cristoferi, Laura
    Malinverno, Federica
    Gerussi, Alessio
    Stocken, Deborah D.
    Cordell, Heather J.
    Hirschfield, Gideon M.
    Alexander, Graeme J.
    Sandford, Richard N.
    Jones, David E.
    Invernizzi, Pietro
    Mells, George F.
    [J]. LANCET GASTROENTEROLOGY & HEPATOLOGY, 2018, 3 (09) : 626 - 634
  • [6] The UK-PBC Risk Scores: Derivation and Validation of a Scoring System for Long-Term Prediction of End-Stage Liver Disease in Primary Biliary Cholangitis
    Carbone, Marco
    Sharp, Stephen J.
    Flack, Steve
    Paximadas, Dimitrios
    Spiess, Kelly
    Adgey, Carolyn
    Griffiths, Laura
    Lim, Reyna
    Trembling, Paul
    Williamson, Kate
    Wareham, Nick J.
    Aldersley, Mark
    Bathgate, Andrew
    Burroughs, Andrew K.
    Heneghan, Michael A.
    Neuberger, James M.
    Thorburn, Douglas
    Hirschfield, Gideon M.
    Cordell, Heather J.
    Alexander, Graeme J.
    Jones, David E. J.
    Sandford, Richard N.
    Mells, George F.
    [J]. HEPATOLOGY, 2016, 63 (03) : 930 - 950
  • [7] Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy
    Cikes, Maja
    Sanchez-Martinez, Sergio
    Claggett, Brian
    Duchateau, Nicolas
    Piella, Gemma
    Butakoff, Constantine
    Pouleur, Anne Catherine
    Knappe, Dorit
    Biering-Sorensen, Tor
    Kutyifa, Valentina
    Moss, Arthur
    Stein, Kenneth
    Solomon, Scott D.
    Bijnens, Bart
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (01) : 74 - 85
  • [8] Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis
    Corpechot, Christophe
    Abenavoli, Ludovico
    Rabahi, Nabila
    Chretien, Yves
    Andreani, Tony
    Johanet, Catherine
    Chazouilleres, Olivier
    Poupon, Raoul
    [J]. HEPATOLOGY, 2008, 48 (03) : 871 - 877
  • [9] Early primary biliary cirrhosis: Biochemical response to treatment and prediction of long-term outcome
    Corpechot, Christophe
    Chazouilleres, Olivier
    Poupon, Raoul
    [J]. JOURNAL OF HEPATOLOGY, 2011, 55 (06) : 1361 - 1367
  • [10] Real-world experience with obeticholic acid in patients with primary biliary cholangitis
    D'Amato, Daphne
    De Vincentis, Antonio
    Malinverno, Federica
    Vigano, Mauro
    Alvaro, Domenico
    Pompili, Maurizio
    Picciotto, Antonino
    Palitti, Valeria Pace
    Russello, Maurizio
    Storato, Silvia
    Pigozzi, Marie Graciella
    Calvaruso, Vincenza
    De Gasperi, Elisabetta
    Lleo, Ana
    Castellaneta, Antonino
    Pellicelli, Adriano
    Cazzagon, Nora
    Floreani, Annarosa
    Muratori, Luigi
    Fagiuoli, Stefano
    Niro, Grazia Anna
    Feletti, Valentina
    Cozzolongo, Raffaele
    Terreni, Natalia
    Marzioni, Marco
    Pellicano, Rinaldo
    Pozzoni, Pietro
    Baiocchi, Leonardo
    Chessa, Luchino
    Rosina, Floriano
    Bertino, Gaetano
    Vinci, Maria
    Morgando, Anna
    Vanni, Ester
    Scifo, Gaetano
    Sacco, Rodolfo
    D'Anto, Maria
    Bellia, Valentina
    Boldizzoni, Roberto
    Casella, Silvia
    Omazzi, Barbara
    Poggi, Guido
    Cristoferi, Laura
    Gerussi, Alessio
    Ronca, Vincenzo
    Venere, Rosanna
    Ponziani, Francesca
    Cannavo, Maria
    Mussetto, Alessandro
    Fontana, Rosanna
    [J]. JHEP REPORTS, 2021, 3 (02)