Numerical radius and Berezin number inequality

被引:6
作者
Majee, Satyabrata [1 ]
Maji, Amit [1 ]
Manna, Atanu [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Indian Inst Carpet Technol, Bhadohi 221401, Uttar Pradesh, India
关键词
Numerical radius; Berezin number; Isometry; Shift; Reproducing kernel Hilbert spaces; Hardy's inequality; KERNEL HILBERT-SPACE; OPERATORS;
D O I
10.1016/j.jmaa.2022.126566
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study various inequalities for numerical radius and Berezin number of a bounded linear operator on a Hilbert space. It is proved that the numerical radius of a pure two-isometry is 1 and the Crawford number of a pure two-isometry is 0. In particular, we show that for any scalar-valued non-constant inner function theta, the numerical radius and the Crawford number of a Toeplitz operator T-theta on a Hardy space is 1 and 0, respectively. It is also shown that numerical radius is multiplicative for a class of isometries and sub-multiplicative for a class of commutants of a shift. We have illustrated these results with some concrete examples. Finally, some Hardy-type inequalities for Berezin number of certain class of operators are established with the help of the classical Hardy's inequality. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1970, Harmonic Analysis on Operators on Hilbert Space
[2]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[3]  
Berezin F. A., 1972, Math. USSR-Izv., V6, P1117
[4]  
Berezin FA., 1974, Math. USSR Izvest, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[5]   MAPPING THEOREMS FOR NUMERICAL RANGE [J].
BERGER, CA ;
STAMPFLI, JG .
AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (04) :1047-&
[6]  
Bonsall F.F., 1971, NUMERICAL RANGES, VI
[7]  
Coburn LA, 2012, P AM MATH SOC, V140, P3445
[8]  
Conway JB., 1990, COURSE FUNCTIONAL AN, V2
[9]   Partially isometric Toeplitz operators on the polydisc [J].
Deepak, K. D. ;
Pradhan, Deepak Kumar ;
Sarkar, Jaydeb .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (04) :1350-1362
[10]   ON THE INVERSE POWER INEQUALITY FOR THE BEREZIN NUMBER OF OPERATORS [J].
Garayev, Mubariz ;
Saltan, Suna ;
Gundogdu, Dilara .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04) :997-1003