Unified characterization for higher-order topological phase transitions

被引:13
作者
Jia, Wei [1 ,2 ,3 ]
Zhou, Xin-Chi [1 ,2 ,3 ]
Zhang, Lin [4 ]
Zhang, Long [5 ,6 ]
Liu, Xiong-Jun [1 ,2 ,3 ,7 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[5] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[6] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Wuhan 430074, Peoples R China
[7] Int Quantum Acad, Shenzhen 518048, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
REALIZATION; SEMIMETAL; STATES; MODEL; BAND;
D O I
10.1103/PhysRevResearch.5.L022032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Higher-order topological phase transitions (HOTPTs) are associated with closing either the bulk energy gap (type-I) or boundary energy gap (type-II) without changing symmetry, and conventionally, both transitions are captured in real space and characterized separately. Here, we propose a momentum-space topological characterization of HOTPTs which unifies both types of topological transitions and enables a precise detection by quench dynamics. Our unified characterization is based on a correspondence between mass domain walls on real-space boundaries and higher-order band-inversion surfaces (BISs) which are characteristic interfaces in the momentum subspace. Topological transitions occur when momentum-space topological nodes, dubbed higher-order topological charges, cross the higher-order BISs after proper projection. Particularly, the bulk (boundary) gap closes when all (part of) topological charges cross the BISs, characterizing type-I (type-II) HOTPTs. These distinct dynamical behaviors of higher-order topological charges can be feasibly measured from quench dynamics driven with control in experiments. Our work opens an avenue to characterize and detect the two types of HOTPTs within a unified framework and shall advance research in both theory and experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Staircase to higher-order topological phase transitions
    Cats, P.
    Quelle, A.
    Viyuela, O.
    Martin-Delgado, M. A.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [2] Higher-Order Topological Phase of Interacting Photon Pairs
    Stepanenko, Andrei A.
    Lyubarov, Mark D.
    Gorlach, Maxim A.
    PHYSICAL REVIEW LETTERS, 2022, 128 (21)
  • [3] Circular dichroism in higher-order harmonic generation: Heralding topological phases and transitions in Chern insulators
    Chacon, Alexis
    Kim, Dasol
    Zhu, Wei
    Kelly, Shane P.
    Dauphin, Alexandre
    Pisanty, Emilio
    Maxwell, Andrew S.
    Picon, Antonio
    Ciappina, Marcelo F.
    Kim, Dong Eon
    Ticknor, Christopher
    Saxena, Avadh
    Lewenstein, Maciej
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [4] Higher-order topological insulator phase in a modified Haldane model
    Wang, Baokai
    Zhou, Xiaoting
    Lin, Hsin
    Bansil, Arun
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [5] An anomalous higher-order topological insulator
    Franca, S.
    van den Brink, J.
    Fulga, I. C.
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [6] Higher-order topological quantum paramagnets
    Gonzalez-Cuadra, Daniel
    PHYSICAL REVIEW B, 2022, 105 (02)
  • [7] Multipole higher-order topological semimetals
    Qi, Yajuan
    He, Zhaojian
    Deng, Ke
    Li, Jing
    Wang, Yuhua
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [8] Generation of higher-order topological insulators using periodic driving
    Ghosh, Arnob Kumar
    Nag, Tanay
    Saha, Arijit
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (09)
  • [9] Higher-order Van Hove singularities in kagome topological bands
    Wang, Edrick
    Pullasseri, Lakshmi
    Santos, Luiz H.
    PHYSICAL REVIEW B, 2025, 111 (07)
  • [10] Topological invariants for anomalous Floquet higher-order topological insulators
    Huang, Biao
    FRONTIERS OF PHYSICS, 2023, 18 (01)