No sign problem in one-dimensional path integral Monte Carlo simulation of fermions: A topological proof

被引:1
|
作者
Chin, Siu A. [1 ]
机构
[1] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
关键词
SYSTEMS;
D O I
10.1103/PhysRevE.107.035305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper shows that, in one dimension, due to its topology, a closed-loop product of short-time propagators is always positive, despite the fact that each antisymmetric free fermion propagator can be of either sign.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] KINETIC MONTE CARLO STUDY OF STRUCTURAL PROTON DIFFUSION ALONG A ONE-DIMENSIONAL PATH
    Maslowski, Tomasz
    Drzewinski, Andrzej
    Zubaszewska, Malgorzata
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (03) : 59 - 64
  • [22] Quantum Monte Carlo simulation study of one-dimensional periodic Anderson model
    Sharma, M
    Kumari, K
    Singh, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (32): : 3927 - 3942
  • [23] QUANTUM MONTE-CARLO SIMULATION OF ONE-DIMENSIONAL PERIODIC ANDERSON MODEL
    SASO, T
    SEINO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (11) : 3729 - 3732
  • [24] FEYNMAN PATH-INTEGRAL QUANTUM MONTE-CARLO SIMULATIONS OF ONE-DIMENSIONAL CHAINS IN THE PRESENCE OF ATTRACTIVE INTERSITE INTERACTIONS
    BOHM, MC
    SCHULTE, J
    UTRERA, L
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 176 (02): : 401 - 413
  • [25] Relativistic path integral Monte Carlo: Relativistic oscillator problem
    Ivanov, Aleksandr
    Novoselov, Alexander
    Pavlovsky, Oleg
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (11):
  • [26] Path integral for one-dimensional Dirac oscillator
    R. Rekioua
    T. Boudjedaa
    The European Physical Journal C, 2007, 49 : 1091 - 1098
  • [27] Path integral for one-dimensional Dirac oscillator
    Rekioua, R.
    Boudjedaa, T.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 49 (04): : 1091 - 1098
  • [28] Topological degeneracy and pairing in a one-dimensional gas of spinless fermions
    Ruhman, Jonathan
    Altman, Ehud
    PHYSICAL REVIEW B, 2017, 96 (08)
  • [29] Topological phases of one-dimensional fermions: An entanglement point of view
    Turner, Ari M.
    Pollmann, Frank
    Berg, Erez
    PHYSICAL REVIEW B, 2011, 83 (07):
  • [30] Path integral Monte Carlo simulation of charged particles in traps
    Filinov, Alexei
    Boening, Jens
    Bonitz, Michael
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 397 - 412