ANALYTIC RANKS OF ELLIPTIC CURVES OVER NUMBER FIELDS

被引:0
作者
Cho, Peter J. [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan, South Korea
基金
新加坡国家研究基金会;
关键词
Elliptic curve; analytic rank; cyclic extension;
D O I
10.1090/proc/16182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be an elliptic curve over Q. Then, we show that the average analytic rank of E over cyclic extensions of degree l over Q with l a prime not equal to 2, is at most 2+rQ(E), where rQ(E) is the analytic rank of the elliptic curve E over Q. This bound is independent of the degree l. Using a recent result of Bhargava, Taniguchi and Thorne [Improved error estimates for the Davenport-Heilbronn theorems, arxiv.org/abs/2107.12819, 2021], we obtain a non-trivial upper bound on the average analytic rank of E over S3-fields.
引用
收藏
页码:1403 / 1414
页数:12
相关论文
共 14 条
  • [1] A NONVANISHING RESULT FOR TWISTS OF L-FUNCTIONS OF GL(N)
    BARTHEL, L
    RAMAKRISHNAN, D
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 74 (03) : 681 - 700
  • [2] Bhargava M, 2023, Arxiv, DOI arXiv:2107.12819
  • [3] Dirichlet characters and low-lying zeros of L-functions
    Cho, Peter J.
    Park, Jeongho
    [J]. JOURNAL OF NUMBER THEORY, 2020, 212 : 203 - 232
  • [4] Central limit theorem for Artin L-functions
    Cho, Peter J.
    Kim, Henry H.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 1 - 14
  • [5] Cho PJ, 2015, MATH Z, V279, P669, DOI 10.1007/s00209-014-1387-2
  • [6] David Chantal, 2007, London Math. Soc. Lecture Note Ser., V341, P247, DOI [10.1017/cbo9780511735158.016, DOI 10.1017/CBO9780511735158.016]
  • [7] Goldfeld D., 1979, Lecture Notes in Math., P108
  • [8] The average analytic rank of elliptic curves
    Heath-Brown, DR
    [J]. DUKE MATHEMATICAL JOURNAL, 2004, 122 (03) : 591 - 623
  • [9] Iwaniec Henryk, 2004, ANAL NUMBER THEORY, V53, DOI DOI 10.1090/COLL/053
  • [10] Mazur B, 2018, AM J MATH, V140, P571