Weakly non-collapsed RCD spaces are strongly non-collapsed

被引:12
作者
Brena, Camillo [1 ]
Gigli, Nicola [2 ]
Honda, Shouhei [3 ]
Zhu, Xingyu [4 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Scuola Int Super Studi Avanzati, Trieste, Italy
[3] Tohoku Univ, Sendai, Japan
[4] Georgia Inst Technol, Atlanta, GA USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2023年 / 2023卷 / 794期
关键词
METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; LOCAL DIRICHLET SPACES; RICCI CURVATURE; HEAT KERNEL; BOUNDS; EQUIVALENCE; INEQUALITY; BEHAVIOR; FLOW;
D O I
10.1515/crelle-2022-0071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any weakly non-collapsed RCD space is actually non-collapsed, up to a renormalization of the measure. This confirms a conjecture raised by De Philippis and the second named author in full generality. One of the auxiliary results of independent interest that we obtain is about the link between the propertiestr(Hess f ) = Af on U subset of X for every f sufficiently regular,m = can on U subset of X for some c > 0,where U subset of X is open and X is a - possibly collapsed - RCD space of essential dimension n.
引用
收藏
页码:215 / 252
页数:38
相关论文
共 61 条
  • [1] AMBROSIO L., 2004, OXFORD LECT SERIES M, V25
  • [2] Ambrosio L., 2018, P INT C MATH RIO DE, VI, P301
  • [3] Embedding of RCD* (K, N) spaces in L2 via eigenfunctions
    Ambrosio, Luigi
    Honda, Shouhei
    Portegies, Jacobus W.
    Tewodrose, David
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (10)
  • [4] Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces
    Ambrosio, Luigi
    Mondino, Andrea
    Savare, Giuseppe
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1270) : 1 - +
  • [5] Local spectral convergence in RCD*(K, N) spaces
    Ambrosio, Luigi
    Honda, Shouhei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 1 - 23
  • [6] Ambrosio L, 2018, ANN GLOB ANAL GEOM, V53, P97, DOI 10.1007/s10455-017-9569-x
  • [7] Ambrosio L, 2017, MEASURE THEORY IN NON-SMOOTH SPACES, P1
  • [8] Ambrosio L, 2016, J GEOM ANAL, V26, P24, DOI 10.1007/s12220-014-9537-7
  • [9] Ambrosio L, 2015, ADV STU P M, V67, P1
  • [10] METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) : 1405 - 1490