On synchronization of the double sphere Kuramoto model with connected undirected graphs

被引:3
作者
Shi, Yushi [1 ,2 ]
Li, Ting [1 ]
Zhu, Jiandong [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Zijin Coll, Nanjing, Peoples R China
关键词
Double sphere Kuramoto model; Synchronization; Synchronization rate; Undirected graph; OSCILLATORS;
D O I
10.1016/j.physd.2022.133555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
M.A. Lohe first proposed the double sphere Kuramoto model (On the double sphere model of synchronization, Physica D: Nonlinear Phenomena, 412:132642, 2020), which is a more general model than the high-dimensional Kuramoto model defined on a sphere. For the double sphere Kuramoto model with a complete graph, some theoretic results on synchronization were obtained. But for the case of general graphs, there is no report yet. In this paper, for the double sphere Kuramoto model composed of identical oscillators interacting through a connected undirected graph with a symmetric nonnegative adjacency matrix, the synchronization is proved by using LaSalle's invariance principle. Moreover, the exponential synchronization is achieved, and the supremum of exponential synchronization rates is exactly obtained.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Effect of time delay on the onset of synchronization of the stochastic Kuramoto model [J].
Sen, Monoj Kumar ;
Bag, Bidhan Chandra ;
Petrosyan, Karen G. ;
Hu, Chin-Kun .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[42]   Multistable behavior above synchronization in a locally coupled Kuramoto model [J].
Tilles, Paulo F. C. ;
Ferreira, Fernando F. ;
Cerdeira, Hilda A. .
PHYSICAL REVIEW E, 2011, 83 (06)
[43]   On the Synchronization of the Kuramoto-Type Model of Oscillators With Lossy Couplings [J].
Ojo, Yemi ;
Laib, Khaled ;
Lestas, Ioannis .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :1225-1230
[44]   Phase synchronization of coupled bursting neurons and the generalized Kuramoto model [J].
Ferrari, F. A. S. ;
Viana, R. L. ;
Lopes, S. R. ;
Stoop, R. .
NEURAL NETWORKS, 2015, 66 :107-118
[45]   Analysis of Synchronization Behavior of Small World Networks by Kuramoto Model [J].
Ciftci, Koray .
2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
[46]   Synchronization of Pulse-Coupled Oscillators on (Strongly) Connected Graphs [J].
Nunez, Felipe ;
Wang, Yongqiang ;
Doyle, Francis J., III .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (06) :1710-1715
[47]   The Energy Landscape of the Kuramoto Model in Random Geometric Graphs in a Circle [J].
De Vita, Cecilia ;
Bonder, Julian Fernandez ;
Groisman, Pablo .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01) :1-15
[48]   Stability of Twisted States in the Kuramoto Model on Cayley and Random Graphs [J].
Medvedev, Georgi S. ;
Tang, Xuezhi .
JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) :1169-1208
[49]   Stability of Twisted States in the Kuramoto Model on Cayley and Random Graphs [J].
Georgi S. Medvedev ;
Xuezhi Tang .
Journal of Nonlinear Science, 2015, 25 :1169-1208
[50]   On the Solvability of the Discrete s(x, .)-Laplacian Problems on Simple, Connected, Undirected, Weighted, and Finite Graphs [J].
Pietrusiak, Filip ;
Wieteska, Renata ;
Gordinowicz, Przemyslaw .
ENTROPY, 2022, 24 (10)