Bidirectional Relationship Inferring Network for Referring Image Localization and Segmentation

被引:13
作者
Feng, Guang [1 ]
Hu, Zhiwei [1 ]
Zhang, Lihe [1 ]
Sun, Jiayu [1 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Location awareness; Visualization; Task analysis; Linguistics; Semantics; Feature extraction; Language-guided visual attention; referring image localization and segmentation; segmentation-guided feature augmentation; vision-guided linguistic attention (VLAM);
D O I
10.1109/TNNLS.2021.3106153
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, referring image localization and segmentation has aroused widespread interest. However, the existing methods lack a clear description of the interdependence between language and vision. To this end, we present a bidirectional relationship inferring network (BRINet) to effectively address the challenging tasks. Specifically, we first employ a vision-guided linguistic attention module to perceive the keywords corresponding to each image region. Then, language-guided visual attention adopts the learned adaptive language to guide the update of the visual features. Together, they form a bidirectional cross-modal attention module (BCAM) to achieve the mutual guidance between language and vision. They can help the network align the cross-modal features better. Based on the vanilla language-guided visual attention, we further design an asymmetric language-guided visual attention, which significantly reduces the computational cost by modeling the relationship between each pixel and each pooled subregion. In addition, a segmentation-guided bottom-up augmentation module (SBAM) is utilized to selectively combine multilevel information flow for object localization. Experiments show that our method outperforms other state-of-the-art methods on three referring image localization datasets and four referring image segmentation datasets.
引用
收藏
页码:2246 / 2258
页数:13
相关论文
共 72 条
[1]  
[Anonymous], 2015, ACS SYM SER
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   YOLACT Real-time Instance Segmentation [J].
Bolya, Daniel ;
Zhou, Chong ;
Xiao, Fanyi ;
Lee, Yong Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9156-9165
[4]   Multi attention module for visual tracking [J].
Chen, Boyu ;
Li, Peixia ;
Sun, Chong ;
Wang, Dong ;
Yang, Gang ;
Lu, Huchuan .
PATTERN RECOGNITION, 2019, 87 :80-93
[5]   See-Through-Text Grouping for Referring Image Segmentation [J].
Chen, Ding-Jie ;
Jia, Songhao ;
Lo, Yi-Chen ;
Chen, Hwann-Tzong ;
Liu, Tyng-Luh .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7453-7462
[6]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[9]   Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [J].
Chen, Xiaokang ;
Lin, Kwan-Yee ;
Wang, Jingbo ;
Wu, Wayne ;
Qian, Chen ;
Li, Hongsheng ;
Zeng, Gang .
COMPUTER VISION - ECCV 2020, PT XI, 2020, 12356 :561-577
[10]  
Chen Y.-W., 2019, P BMVC, P1