Z2 x Z2 Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks

被引:3
作者
Dong, Zhongtian [1 ]
Comajoan Cara, Marcal [2 ]
Dahale, Gopal Ramesh [3 ]
Forestano, Roy T. [4 ]
Gleyzer, Sergei [5 ]
Justice, Daniel [6 ]
Kong, Kyoungchul [1 ]
Magorsch, Tom [7 ]
Matchev, Konstantin T. [4 ]
Matcheva, Katia [4 ]
Unlu, Eyup B. [4 ]
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona 08034, Spain
[3] Indian Inst Technol Bhilai, Chhattisgarh 491001, India
[4] Univ Florida, Inst Fundamental Theory, Phys Dept, Gainesville, FL 32611 USA
[5] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[6] Carnegie Mellon Univ, Software Engn Inst, 4500 Fifth Ave, Pittsburgh, PA 15213 USA
[7] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
关键词
quantum computing; deep learning; quantum machine learning; equivariance; invariance; supervised learning; classification; particle physics; Large Hadron Collider;
D O I
10.3390/axioms13030188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a comparative analysis of the performance of Equivariant Quantum Neural Networks (EQNNs) and Quantum Neural Networks (QNNs), juxtaposed against their classical counterparts: Equivariant Neural Networks (ENNs) and Deep Neural Networks (DNNs). We evaluate the performance of each network with three two-dimensional toy examples for a binary classification task, focusing on model complexity (measured by the number of parameters) and the size of the training dataset. Our results show that the Z(2) x Z(2) EQNN and the QNN provide superior performance for smaller parameter sets and modest training data samples.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Quantum optimization of complex systems with a quantum annealer [J].
Abel, Steve ;
Blance, Andrew ;
Spannowsky, Michael .
PHYSICAL REVIEW A, 2022, 106 (04)
[2]   Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum [J].
Abel, Steven ;
Spannowsky, Michael .
PRX QUANTUM, 2021, 2 (01)
[3]   Quantum computing for quantum tunneling [J].
Abel, Steven ;
Chancellor, Nicholas ;
Spannowsky, Michael .
PHYSICAL REVIEW D, 2021, 103 (01)
[4]  
Ahmed S., Data-Reuploading Classifier
[5]   Classical versus quantum: Comparing tensor-network-based quantum circuits on Large Hadron Collider data [J].
Araz, Jack Y. ;
Spannowsky, Michael .
PHYSICAL REVIEW A, 2022, 106 (06)
[6]  
Batatia I, 2023, Arxiv, DOI arXiv:2306.00091
[7]   Quantum walk approach to simulating parton showers [J].
Bepari, Khadeejah ;
Malik, Sarah ;
Spannowsky, Michael ;
Williams, Simon .
PHYSICAL REVIEW D, 2022, 106 (05)
[8]   Towards a quantum computing algorithm for helicity amplitudes and parton showers [J].
Bepari, Khadeejah ;
Malik, Sarah ;
Spannowsky, Michael ;
Williams, Simon .
PHYSICAL REVIEW D, 2021, 103 (07)
[9]   Unsupervised event classification with graphs on classical and photonic quantum computers [J].
Blance, Andrew ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
[10]   Quantum machine learning for particle physics using a variational quantum classifier [J].
Blance, Andrew ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)