Identification and Validation of T-Cell Exhaustion Signature for Predicting Prognosis and Immune Response in Pancreatic Cancer by Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data

被引:1
|
作者
Zhu, Yaowu [1 ]
Tan, Li [2 ]
Luo, Danju [3 ]
Wang, Xiong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Lab Med, Wuhan 430030, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Infect Control, Wuhan 430030, Peoples R China
[3] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Pathol, Wuhan 430030, Peoples R China
关键词
pancreatic cancer; T-cell exhaustion; immunotherapy; risk model; SPOCK2; BREAST-CANCER; EPIDEMIOLOGY; DYSFUNCTION;
D O I
10.3390/diagnostics14060667
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: Pancreatic cancer (PACA) is one of the most fatal malignancies worldwide. Immunotherapy is largely ineffective in patients with PACA. T-cell exhaustion contributes to immunotherapy resistance. We investigated the prognostic potential of T-cell exhaustion-related genes (TEXGs). Methods: A single-cell RNA (scRNA) sequencing dataset from Tumor Immune Single-Cell Hub (TISCH) and bulk sequencing datasets from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were used to screen differentially expressed TEXGs. Kaplan-Meier survival, LASSO regression, and univariate/multivariate Cox regression analyses were performed to construct a TEXG risk model. This model was used to predict the prognosis, tumor immune microenvironment, and immunotherapy response. The PACA cohorts from the ICGC and GSE71729 datasets were used to validate the risk model. Pan-cancer expression of SPOCK2 was determined using the TISCH database. Results: A six-gene (SPOCK2, MT1X, LIPH, RARRES3, EMP1, and MEG3) risk model was constructed. Patients with low risk had prolonged survival times in both the training (TCGA-PAAD, n = 178) and validation (ICGC-PACA-CA, ICGC-PAAD-US, and GSE71729, n = 412) datasets. Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic variable for PACA. High-risk patients correlated with their immunosuppressive status. Immunohistochemical staining confirmed the changes in TEXGs in clinical samples. Moreover, pan-cancer scRNA sequencing datasets from TISCH analysis indicated that SPOCK2 may be a novel marker of exhausted CD8+ T-cells. Conclusion: We established and validated a T-cell exhaustion-related prognostic signature for patients with PACA. Moreover, our study suggests that SPOCK2 is a novel marker of exhausted CD8+ T cells.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Development of a CD8+ T cell associated signature for predicting the prognosis and immunological characteristics of gastric cancer by integrating single-cell and bulk RNA-sequencing
    Jianxin Li
    Ting Han
    Xin Wang
    Yinchun Wang
    Rui Yang
    Qingqiang Yang
    Scientific Reports, 14
  • [22] Construction of a T-cell exhaustion-related gene signature for predicting prognosis and immune response in hepatocellular carcinoma
    Kuang, Tianrui
    Zhang, Lilong
    Chai, Dongqi
    Chen, Chen
    Wang, Weixing
    AGING-US, 2023, 15 (12): : 5751 - 5774
  • [23] Single-cell RNA sequencing integrated with bulk RNA sequencing analysis identifies a tumor immune microenvironment-related lncRNA signature in lung adenocarcinoma
    Yuqing Ren
    Ruhao Wu
    Chunwei Li
    Long Liu
    Lifeng Li
    Siyuan Weng
    Hui Xu
    Zhe Xing
    Yuyuan Zhang
    Libo Wang
    Zaoqu Liu
    Xinwei Han
    BMC Biology, 22
  • [24] Single-cell RNA-seq reveals T cell exhaustion and immune response landscape in osteosarcoma
    Fan, Qizhi
    Wang, Yiyan
    Cheng, Jun
    Pan, Boyu
    Zang, Xiaofang
    Liu, Renfeng
    Deng, Youwen
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [25] Comprehensive analysis of T cell exhaustion related signature for predicting prognosis and immunotherapy response in HNSCC
    Wei Zhang
    Mei Qu
    Chun Yin
    Zhiliang Jin
    Ya Hu
    Discover Oncology, 15
  • [26] Single-cell RNA sequencing integrated with bulk RNA sequencing analysis identifies a tumor immune microenvironment-related lncRNA signature in lung adenocarcinoma
    Ren, Yuqing
    Wu, Ruhao
    Li, Chunwei
    Liu, Long
    Li, Lifeng
    Weng, Siyuan
    Xu, Hui
    Xing, Zhe
    Zhang, Yuyuan
    Wang, Libo
    Liu, Zaoqu
    Han, Xinwei
    BMC BIOLOGY, 2024, 22 (01)
  • [27] Comprehensive analysis of T cell exhaustion related signature for predicting prognosis and immunotherapy response in HNSCC
    Zhang, Wei
    Qu, Mei
    Yin, Chun
    Jin, Zhiliang
    Hu, Ya
    DISCOVER ONCOLOGY, 2024, 15 (01)
  • [28] Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on B cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma
    Peng Song
    Wenbin Li
    Xiaoxuan Wu
    Zhirong Qian
    Jianming Ying
    Shugeng Gao
    Jie He
    Cancer Immunology, Immunotherapy, 2022, 71 : 2341 - 2354
  • [29] Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on B cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma
    Song, Peng
    Li, Wenbin
    Wu, Xiaoxuan
    Qian, Zhirong
    Ying, Jianming
    Gao, Shugeng
    He, Jie
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2022, 71 (10) : 2341 - 2354
  • [30] Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on NK cell marker genes to predict prognosis and immunotherapy response in hepatocellular carcinoma
    Dashuai Yang
    Fangrui Zhao
    Yang Su
    Yu Zhou
    Jie Shen
    Bin Yu
    Kailiang Zhao
    Youming Ding
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 10609 - 10621