共 64 条
- [11] Duan X, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4665
- [12] A C/C plus plus Code Vulnerability Dataset with Code Changes and CVE Summaries [J]. 2020 IEEE/ACM 17TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR, 2020, : 508 - 512
- [13] Feng ZY, 2020, Arxiv, DOI [arXiv:2002.08155, 10.48550/arXiv.2002.08155]
- [14] LineVul: A Transformer-based Line-Level Vulnerability Prediction [J]. 2022 MINING SOFTWARE REPOSITORIES CONFERENCE (MSR 2022), 2022, : 608 - 620
- [15] Hanif H, 2022, IEEE IJCNN, DOI [10.1109/IJCNN55064.2022.9892280, 10.1109/MEPCON55441.2022.10021719]
- [16] Code Characterization With Graph Convolutions and Capsule Networks [J]. IEEE ACCESS, 2020, 8 : 136307 - 136315
- [17] LineVD: Statement-level Vulnerability Detection using Graph Neural Networks [J]. 2022 MINING SOFTWARE REPOSITORIES CONFERENCE (MSR 2022), 2022, : 596 - 607
- [18] Huo X, 2020, AAAI CONF ARTIF INTE, V34, P4223
- [19] Dam HK, 2017, Arxiv, DOI arXiv:1708.02368
- [20] ACGVD: Vulnerability Detection Based on Comprehensive Graph via Graph Neural Network with Attention [J]. INFORMATION AND COMMUNICATIONS SECURITY (ICICS 2021), PT I, 2021, 12918 : 243 - 259