A deep learning approach to detect and identify live freshwater macroinvertebrates

被引:3
作者
Jaballah, Sami [1 ]
Garcia, Guglielmo Fernandez [2 ,3 ]
Martignac, Francois [2 ]
Parisey, Nicolas [4 ]
Jumel, Stephane [4 ]
Roussel, Jean-Marc [2 ]
Dezerald, Olivier [2 ]
机构
[1] Agrocampus Ouest, INRAE, Ecol & Ecosyst Hlth, ESE, F-35042 Rennes, France
[2] IFREMER, INRAE, Inst Agro, UMR,DECOD,Ecosyst Dynam & Sustainabil, Rennes, France
[3] Univ Rennes 2, CNRS, UMR 6554, LETG, F-35000 Rennes, France
[4] INRAE, UMR 1349, IGEPP, F-35653 Le Rheu, France
关键词
Deep learning; Artificial intelligence; Time-lapse camera; Macroinvertebrates; Mesocosms; Non-lethal sampling; Image processing; Computer vision; IDENTIFICATION; CLASSIFICATION;
D O I
10.1007/s10452-023-10053-7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The study of macroinvertebrates using computer vision is in its infancy and still faces multiple challenges including destructive sampling, low signal-to-noise ratios, and the complexity to choose a model algorithm among multiple existing ones. In order to deal with those challenges, we propose here a new framework, dubbed 'MacroNet,' for the monitoring, i.e., detection and identification at the morphospecies level, of live aquatic macroinvertebrates. This framework is based on an enhanced RetinaNet model. Pre-processing steps are suggested to enhance the characterization propriety of the original algorithm. The images are split into fixed-size tiles to better detect and identify small macroinvertebrates. The tiles are then fed as an input to the model, and the resulting bounding box is assembled. We have optimized the anchor boxes generation process for high detection performance using the k-medoid algorithm. In order to enhance the localization accuracy of the original RetinaNet model, the complete intersection over union loss has been integrated as a regression loss to replace the standard loss (a smooth l1 norm). Experimental results show that MacroNet outperforms the original RetinaNet model on our database and can achieve on average 74.93% average precision (AP), depending on the taxon identity. In our database, taxa were identified at various taxonomic levels, from species to order. Overall, the proposed framework offers promising results for the non-lethal and cost-efficient monitoring of live freshwater macroinvertebrates.
引用
收藏
页码:933 / 949
页数:17
相关论文
共 71 条
[1]   Automatic image-based identification and biomass estimation of invertebrates [J].
Arje, Johanna ;
Melvad, Claus ;
Jeppesen, Mads Rosenhoj ;
Madsen, Sigurd Agerskov ;
Raitoharju, Jenni ;
Rasmussen, Maria Strandgard ;
Iosifidis, Alexandros ;
Tirronen, Ville ;
Gabbouj, Moncef ;
Meissner, Kristian ;
Hoye, Toke Thomas .
METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (08) :922-931
[2]  
Beery S., 2019, BIODIVERS INFORM, V3, DOI DOI 10.3897/BISS.3.37222
[3]   Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive [J].
Birk, Sebastian ;
Bonne, Wendy ;
Borja, Angel ;
Brucet, Sandra ;
Courrat, Anne ;
Poikane, Sandra ;
Solimini, Angelo ;
van de Bund, Wouter ;
Zampoukas, Nikolaos ;
Hering, Daniel .
ECOLOGICAL INDICATORS, 2012, 18 :31-41
[4]   An Automated Light Trap to Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning [J].
Bjerge, Kim ;
Nielsen, Jakob Bonde ;
Sepstrup, Martin Videbaek ;
Helsing-Nielsen, Flemming ;
Hoye, Toke Thomas .
SENSORS, 2021, 21 (02) :1-18
[5]   Outdoor animal tracking combining neural network and time-lapse cameras [J].
Bonneau, Mathieu ;
Vayssade, Jehan-Antoine ;
Troupe, Willy ;
Arquet, Remy .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 168
[6]   Deep learning as a tool for ecology and evolution [J].
Borowiec, Marek L. ;
Dikow, Rebecca B. ;
Frandsen, Paul B. ;
McKeeken, Alexander ;
Valentini, Gabriele ;
White, Alexander E. .
METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (08) :1640-1660
[7]  
Carranza-Rojas J, 2018, MULTIMED SYST APPL, P151, DOI 10.1007/978-3-319-76445-0_9
[8]   Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES Images [J].
Christensen, Jesper Haahr ;
Mogensen, Lars Valdemar ;
Ravn, Ole .
IFAC PAPERSONLINE, 2020, 53 (02) :14546-14551
[9]   InsectCV: A system for insect detection in the lab from trap images [J].
De Cesaro Junior, Telmo ;
Rieder, Rafael ;
Di Domenico, Jessica Regina ;
Lau, Douglas .
ECOLOGICAL INFORMATICS, 2022, 67
[10]  
Dharmarajan A, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), P703