Tuning the hydride stability of the TiVNb-based alloys by equimolar Cr/Al addition

被引:5
作者
Ferreira, Tales [1 ,2 ]
Pineda-Romero, Nayely [1 ]
Botta, Walter Jose [2 ]
Zepon, Guilherme [2 ]
Zlotea, Claudia [1 ]
机构
[1] Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
[2] Univ Fed Sao Carlos, Dept Engn Mat, Rod Washington Luiz, km 235, BR-13565905 Sao Carlos, SP, Brazil
关键词
Multi-principal element alloys; Hydrogen storage; Metal hydrides; Thermodynamic; Thermo-desorption spectroscopy; Absorption; desorption cycling; HYDROGEN SORPTION; METAL-HYDRIDES; ENTROPY; ALUMINUM;
D O I
10.1016/j.intermet.2023.107992
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Body-centered multi-principal element alloys (BCC-MPEAs) based only on hydride-forming elements have low equilibrium plateau pressures during reaction with hydrogen and, consequently, high decomposition temperatures due to the high thermodynamic stability of related hydrides. In this work, we present a strategy to decrease the stability of the final hydrides formed in the BCC TiVNb alloy by simultaneous addition of two non-hydride forming elements, Cr and Al. The (TiVNb)100-x(CrAl)x alloys with x = 10, 20, 30, and 40 at.% crystallize as major BCC solid solutions with dendritic microstructures. Pressure-Composition-Temperature diagrams revealed that the combined addition of Cr and Al thermodynamically destabilizes the dihydride formation for x = 10 and 20 at. %. For higher Cr/Al contents the destabilization is too large to form stable hydrides under maximum 100 bar pressure. The absorption/desorption plateau pressure at room temperature for (TiVNb)80(CrAl)20 alloy are 9 and 0.6 bar, respectively, enabling a reversible capacity of about 0.8 H/M (1.4 wt%) at ambient conditions. The present results provide important insights into the effects of simultaneous Cr and Al additions in BCC-MPEAs and shed light on the design of new alloys with hydrogen absorption and desorption ability at ambient conditions.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] THERMO-CALC & DICTRA, computational tools for materials science
    Andersson, JO
    Helander, T
    Höglund, LH
    Shi, PF
    Sundman, B
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02): : 273 - 312
  • [2] Andreasen Anders., 2004, PREDICTING FORMATION
  • [3] The intermetallic Ti2AlNb
    Banerjee, D
    [J]. PROGRESS IN MATERIALS SCIENCE, 1997, 42 (1-4) : 135 - 158
  • [4] HYDRIDES FORMED FROM INTERMETALLIC COMPOUNDS OF 2 TRANSITION-METALS - A SPECIAL-CLASS OF TERNARY ALLOYS
    BUSCHOW, KHJ
    BOUTEN, PCP
    MIEDEMA, AR
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1982, 45 (09) : 937 - 1039
  • [5] Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys
    Chen, Shu Ying
    Yang, Xiao
    Dahmen, Karin A.
    Liaw, Peter K.
    Zhang, Yong
    [J]. ENTROPY, 2014, 16 (02) : 870 - 884
  • [6] Thermodynamic modeling of Cr and Cr-H systems up to high temperatures and high pressures
    Dottor, Maxime
    Crivello, Jean-Claude
    Joubert, Jean -Marc
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23293 - 23309
  • [7] HYSTERESIS IN METAL-HYDRIDES
    FLANAGAN, TB
    CLEWLEY, JD
    [J]. JOURNAL OF THE LESS-COMMON METALS, 1982, 83 (01): : 127 - 141
  • [8] Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review
    George, Lyci
    Saxena, Surendra K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) : 5454 - 5470
  • [9] Aluminum hydride as a hydrogen and energy storage material: Past, present and future
    Graetz, J.
    Reilly, J. J.
    Yartys, V. A.
    Maehlen, J. P.
    Bulychev, B. M.
    Antonov, V. E.
    Tarasov, B. P.
    Gabis, I. E.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 : S517 - S528
  • [10] Structures of aluminium-based light weight hydrides
    Hauback, Bjorn C.
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2008, 223 (10): : 636 - 648