Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence

被引:2
作者
Bassi, Jacopo [1 ]
Conti, Roberto [2 ]
Farsi, Carla [3 ]
Latremoliere, Frederic [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
[2] Sapienza Univ Roma, Dipartimento SBAI, Rome, Italy
[3] Univ Colorado, Dept Math, Boulder, CO USA
[4] Univ Denver, Dept Math, Denver, CO 80208 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 108卷 / 04期
关键词
C-ASTERISK-ALGEBRAS; FREDHOLM MODULES; DIRAC OPERATORS;
D O I
10.1112/jlms.12787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the groups of isometries and the set of bi-Lipschitz automorphisms of spectral triples from a metric viewpoint, in the propinquity framework of Latremoliere. In particular, we prove that these groups and sets are compact in the automorphism group of the spectral triple C*-algebra with respect to the Monge-Kantorovich metric, which induces the topology of pointwise convergence. We then prove a necessary and sufficient condition for the convergence of the actions of various groups of isometries, in the sense of the covariant version of the Gromov-Hausdorff propinquity, a noncommutative analogue of the Gromov-Hausdorff distance, when working in the context of inductive limits of quantum compact metric spaces and metric spectral triples. We illustrate our work with examples including AF algebras and noncommutative solenoids.
引用
收藏
页码:1488 / 1530
页数:43
相关论文
共 35 条
[1]   Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity [J].
Aguilar, Konrad ;
Latremoliere, Frederic .
STUDIA MATHEMATICA, 2015, 231 (02) :149-193
[2]  
[Anonymous], 2004, MEM AM MATH SOC, V168, P1
[3]  
Bassi J., J NONCOMM GEOM
[4]   Spectral triples on the Jiang-Su algebra [J].
Bassi, Jacopo ;
Dabrowski, Ludwik .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[5]   QUANTUM ISOMETRY GROUPS OF 0 DIMENSIONAL MANIFOLDS [J].
Bhowmick, Jyotishman ;
Goswami, Debashish ;
Skalski, Adam .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) :901-921
[6]   Nilpotent Group C*-algebras as Compact Quantum Metric Spaces [J].
Christ, Michael ;
Rieffel, Marc A. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01) :77-94
[7]   Dirac operators and spectral triples for some fractal sets built on curves [J].
Christensen, Erik ;
Ivan, Cristina ;
Lapidus, Michel L. .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :42-78
[8]  
Christensen E, 2006, J OPERAT THEOR, V56, P17
[9]   Spectral triples and the geometry of fractals [J].
Christensen, Erik ;
Ivan, Cristina ;
Schrohe, Elmar .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (02) :249-274
[10]   COMPACT METRIC-SPACES, FREDHOLM MODULES, AND HYPERFINITENESS [J].
CONNES, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :207-220