CHARACTERIZATIONS OF (JORDAN) DERIVATIONS ON BANACH ALGEBRAS WITH LOCAL ACTIONS

被引:1
作者
Li, Jiankui [1 ]
Li, Shan [2 ]
Luo, Kaijia [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Jiangsu Univ Technol, Dept Math, Changzhou 213001, Peoples R China
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 02期
基金
中国国家自然科学基金;
关键词
Banach algebra; derivation; Jordan derivation; separating point; C-ASTERISK-ALGEBRAS; MAPS; MAPPINGS;
D O I
10.4134/CKMS.c220123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital Banach *-algebra and M be a unital *-A-bimodule. If W is a left separating point of M, we show that every *-derivable mapping at W is a Jordan derivation, and every *-left derivable mapping at W is a Jordan left derivation under the condition WA = AW. Moreover we give a complete description of linear mappings & delta; and & tau; from A into M satisfying & delta;(A)B* +A & tau; (B)* = 0 for any A, B & ISIN; A with AB* = 0 or & delta;(A) o B* + A o & tau; (B)* = 0 for any A, B & ISIN; A with A o B* = 0, where A o B = AB + BA is the Jordan product.
引用
收藏
页码:469 / 485
页数:17
相关论文
共 25 条
[11]  
Ding Y, 2017, B IRAN MATH SOC, V43, P427
[12]  
Fadaee B, 2020, B MALAYS MATH SCI SO, V43, P2851, DOI 10.1007/s40840-019-00841-6
[13]   CHARACTERIZATION OF LINEAR MAPPINGS ON (BANACH) *-ALGEBRAS BY SIMILAR PROPERTIES TO DERIVATIONS [J].
Fadaee, Behrooz ;
Fallahi, Kamal ;
Ghahramani, Roger .
MATHEMATICA SLOVACA, 2020, 70 (04) :1003-1011
[14]   TERNARY DERIVATIONS OF NEST ALGEBRAS [J].
Fosner, Ajda ;
Ghahramani, Hoger .
OPERATORS AND MATRICES, 2021, 15 (01) :327-339
[15]   LINEAR MAPS ON BLOCK UPPER TRIANGULAR MATRIX ALGEBRAS BEHAVING LIKE JORDAN DERIVATIONS THROUGH COMMUTATIVE ZERO PRODUCTS [J].
Ghahramani, H. ;
Ghosseiri, M. N. ;
Heidarizadeh, L. .
OPERATORS AND MATRICES, 2020, 14 (01) :189-205
[16]   ON DERIVATIONS AND JORDAN DERIVATIONS THROUGH ZERO PRODUCTS [J].
Ghahramani, Hoger .
OPERATORS AND MATRICES, 2014, 8 (03) :759-771
[17]   Characterisations of derivations on some operator algebras [J].
Jing, W ;
Lu, SJ ;
Li, PT .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (02) :227-232
[19]   Linear Mappings Characterized by Action on Zero Products or Unit Products [J].
Li, Jiankui ;
Li, Shan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) :31-40
[20]   Characterizations of Jordan derivations and Jordan homomorphisms [J].
Li, Jiankui ;
Zhou, Jiren .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (02) :193-204