CHARACTERIZATIONS OF (JORDAN) DERIVATIONS ON BANACH ALGEBRAS WITH LOCAL ACTIONS

被引:1
作者
Li, Jiankui [1 ]
Li, Shan [2 ]
Luo, Kaijia [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Jiangsu Univ Technol, Dept Math, Changzhou 213001, Peoples R China
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 02期
基金
中国国家自然科学基金;
关键词
Banach algebra; derivation; Jordan derivation; separating point; C-ASTERISK-ALGEBRAS; MAPS; MAPPINGS;
D O I
10.4134/CKMS.c220123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital Banach *-algebra and M be a unital *-A-bimodule. If W is a left separating point of M, we show that every *-derivable mapping at W is a Jordan derivation, and every *-left derivable mapping at W is a Jordan left derivation under the condition WA = AW. Moreover we give a complete description of linear mappings & delta; and & tau; from A into M satisfying & delta;(A)B* +A & tau; (B)* = 0 for any A, B & ISIN; A with AB* = 0 or & delta;(A) o B* + A o & tau; (B)* = 0 for any A, B & ISIN; A with A o B* = 0, where A o B = AB + BA is the Jordan product.
引用
收藏
页码:469 / 485
页数:17
相关论文
共 25 条
[1]   CHARACTERIZING JORDAN MAPS ON C*-ALGEBRAS THROUGH ZERO PRODUCTS [J].
Alaminos, J. ;
Bresar, J. M. ;
Extremera, J. ;
Villena, A. R. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :543-555
[2]   Characterizing linear mappings through zero products or zero Jordan products [J].
An, Guangyu ;
He, Jun ;
Li, Jiankui .
PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (02) :270-286
[3]  
An GY, 2020, ANN FUNCT ANAL, V11, P680, DOI 10.1007/s43034-019-00047-8
[4]   CHARACTERIZATIONS OF JORDAN LEFT DERIVATIONS ON SOME ALGEBRAS [J].
An, Guangyu ;
Ding, Yana ;
Li, Jiankui .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (03) :466-481
[5]   Derivations and derivable maps on von Neumann algebras [J].
An, Runling ;
Cai, Yaru .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15) :2806-2812
[6]   Characterizing centralizer maps and Jordan centralizer maps through zero products [J].
Bahmani, M. A. ;
Ghomanjani, F. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) :1093-1097
[7]   Linear Maps on Standard Operator Algebras Characterized by Action on Zero Products [J].
Barari, Amin ;
Fadaee, Behrooz ;
Ghahramani, Hoger .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (05) :1573-1583
[8]   Generalized derivations on unital algebras determined by action on zero products [J].
Benkovic, Dominik ;
Grasic, Mateja .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 445 :347-368
[9]  
BRESAR M, 1988, P AM MATH SOC, V104, P1003
[10]  
Bresar M., 2021, FRONTIERS MATH, DOI [10.1007/978-3-030-80242-4, DOI 10.1007/978-3-030-80242-4]