ON THE NUMBER OF POINTS OF GIVEN ORDER ON ODD-DEGREE HYPERELLIPTIC CURVES

被引:1
作者
Boxall, John [1 ]
机构
[1] Univ Caen Normandie, Lab Math Nicolas Oresme, UME CNRS 6139, F-14032 Caen, France
关键词
hyperelliptic curves; Jacobian varieties; torsion points; TORSION POINTS; DIVISION;
D O I
10.1216/rmj.2023.53.357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For integers N & GE; 2 and g & GE; 1, we study bounds on the cardinality of the set of points of order dividing N lying on a hyperelliptic curve of genus g embedded in its jacobian using a Weierstrass point as base point. This leads us to revisit division polynomials introduced by Cantor in 1995 and strengthen a divisibility result proved by him. Several examples are discussed.
引用
收藏
页码:357 / 382
页数:26
相关论文
共 14 条
[1]  
ARBARELLO E., 1985, GRUNDL MATH WISSEN, VI, P267
[2]   TORSION POINTS OF ORDER 2g+1 ON ODD DEGREE HYPERELLIPTIC CURVES OF GENUS g [J].
Bekker, Boris M. ;
Zarhin, Yuri G. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (11) :8059-8094
[3]   5-torsion points on curves of genus 2 [J].
Boxall, J ;
Grant, D ;
Leprévost, F .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :29-43
[4]  
CANTOR DG, 1994, J REINE ANGEW MATH, V447, P91
[5]  
Coleman R., 1999, Automorphic Forms, Automorphic Representations, and Arithmetic, V66, P27
[6]  
Galbraith S.D., 1996, THESIS OXFORD U
[7]  
Lang S., 1978, ELLIPTIC CURVES DIOP
[8]  
Liu Q., 2002, Oxford Graduate Texts in Mathematics, V6
[9]   Determinant expressions for hyperelliptic functions [J].
Onishi, Y .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :705-742
[10]   Torsion points on theta divisors and semihomogeneous vector bundles [J].
Pareschi, Giuseppe .
ALGEBRA & NUMBER THEORY, 2021, 15 (06) :1581-1592