ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins

被引:89
作者
Abanades, Brennan [1 ]
Wong, Wing Ki [2 ]
Boyles, Fergus [1 ]
Georges, Guy [2 ]
Bujotzek, Alexander [2 ]
Deane, Charlotte M. [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Roche Innovat Ctr Munich, Large Mol Res, Roche Pharm Res & Early Dev, Penzberg, Germany
基金
英国工程与自然科学研究理事会;
关键词
SIDE-CHAIN; ACCURACY; SEQUENCE;
D O I
10.1038/s42003-023-04927-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2). We show that ImmuneBuilder generates structures with state of the art accuracy while being far faster than AlphaFold2. For example, on a benchmark of 34 recently solved antibodies, ABodyBuilder2 predicts CDR-H3 loops with an RMSD of 2.81 angstrom, a 0.09 angstrom improvement over AlphaFold-Multimer, while being over a hundred times faster. Similar results are also achieved for nanobodies, (NanoBodyBuilder2 predicts CDR-H3 loops with an average RMSD of 2.89 angstrom, a 0.55 angstrom improvement over AlphaFold2) and TCRs. By predicting an ensemble of structures, ImmuneBuilder also gives an error estimate for every residue in its final prediction. ImmuneBuilder is made freely available, both to download (https://github.com/oxpig/ImmuneBuilder) and to use via our webserver (http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred). We also make available structural models for similar to 150 thousand non-redundant paired antibody sequences (https://doi.org/10.5281/zenodo.7258553).
引用
收藏
页数:8
相关论文
共 49 条
[1]   ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation [J].
Abanades, Brennan ;
Georges, Guy ;
Bujotzek, Alexander ;
Deane, Charlotte M. .
BIOINFORMATICS, 2022, 38 (07) :1877-1880
[2]   The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design [J].
Alford, Rebecca F. ;
Leaver-Fay, Andrew ;
Jeliazkov, Jeliazko R. ;
O'Meara, Matthew J. ;
DiMaio, Frank P. ;
Park, Hahnbeom ;
Shapovalov, Maxim V. ;
Renfrew, P. Douglas ;
Mulligan, Vikram K. ;
Kappel, Kalli ;
Labonte, Jason W. ;
Pacella, Michael S. ;
Bonneau, Richard ;
Bradley, Philip ;
Dunbrack, Roland L., Jr. ;
Das, Rhiju ;
Baker, David ;
Kuhlman, Brian ;
Kortemme, Tanja ;
Gray, Jeffrey J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) :3031-3048
[3]   Modeling Antibody-Antigen Complexes by Information-Driven Docking [J].
Ambrosetti, Francesco ;
Jimenez-Garcia, Brian ;
Roel-Touris, Jorge ;
Bonvin, Alexandre M. J. J. .
STRUCTURE, 2020, 28 (01) :119-+
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires [J].
Brown, Alex J. ;
Snapkov, Igor ;
Akbar, Rahmad ;
Pavlovic, Milena ;
Miho, Enkelejda ;
Sandve, Geir K. ;
Greiff, Victor .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :701-736
[7]   Antibody Structure and Function: The Basis for Engineering Therapeutics [J].
Chiu, Mark L. ;
Goulet, Dennis R. ;
Teplyakov, Alexey ;
Gilliland, Gary L. .
ANTIBODIES, 2019, 8 (04)
[8]   NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning [J].
Cohen, Tomer ;
Halfon, Matan ;
Schneidman-Duhovny, Dina .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[9]   ABangle: characterising the VHVL orientation in antibodies [J].
Dunbar, J. ;
Fuchs, A. ;
Shi, J. ;
Deane, C. M. .
PROTEIN ENGINEERING DESIGN & SELECTION, 2013, 26 (10) :611-620
[10]   ANARCI: antigen receptor numbering and receptor classification [J].
Dunbar, James ;
Deane, Charlotte M. .
BIOINFORMATICS, 2016, 32 (02) :298-300