Spatial quantization of exciton-polariton condensates in optically induced traps

被引:13
作者
Aladinskaia, Ekaterina [1 ]
Cherbunin, Roman [1 ]
Sedov, Evgeny [1 ,2 ,3 ,4 ]
Liubomirov, Alexey [1 ]
Kavokin, Kirill [1 ]
Khramtsov, Evgeny [1 ]
Petrov, Mikhail [1 ]
Savvidis, P. G. [2 ,3 ,5 ,6 ]
Kavokin, Alexey [1 ,2 ,3 ,7 ]
机构
[1] St Petersburg State Univ, Spin Opt Lab, Ulyanovskaya 1, St Petersburg 198504, Russia
[2] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[3] Westlake Inst Adv Study, Inst Nat Sci, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[4] Vladimir State Univ, Gorky St 87, Vladimir 600000, Russia
[5] FORTH IESL, POB 1527, Iraklion 71110, Crete, Greece
[6] Univ Crete, Dept Mat Sci & Technol, POB 2208, Iraklion 71003, Crete, Greece
[7] Moscow Inst Phys & Technol, Inst Skiy Pereulok 9, Dolgoprudnyi 141701, Moscow Region, Russia
关键词
BOSE-EINSTEIN CONDENSATION;
D O I
10.1103/PhysRevB.107.045302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the formation of exciton-polariton condensates in potlike traps created by optical pumping in a planar microcavity with embedded quantum wells. The trap is formed by a repulsive reservoir of incoherent excitons excited by a ring-shaped nonresonant laser beam. Polariton condensates confined in a trapping potential are subject to spatial confinement leading to energy quantization. We reveal experimentally the discrete spectrum of polariton eigenstates in an optical trap that can be characterized by a pair of quantum numbers, azimuthal and radial quantum numbers, that correspond to the number of nodes of a condensate wave function in the corresponding directions. The occupation numbers of the eigenstates of a polariton condensate are determined by the overlap integral of the condensate wave function and the exciton reservoir spatial density distribution. The nonresonant pumping scheme enables engineering the shape and size of the trap, that allows to selectively excite specific superpositions of the eigenstates of a polariton condensate in each experiment. We demonstrate both single-and multiple-mode polariton lasing in an optical trap.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Tight-binding model for exciton-polariton condensates in external potentials [J].
Stepnicki, Piotr ;
Matuszewski, Michal .
PHYSICAL REVIEW A, 2013, 88 (03)
[42]   Exciton-polariton Laser [J].
Moskalenko, S. A. ;
Tiginyanu, I. .
3RD INTERNATIONAL CONFERENCE ON NANOTECHNOLOGIES AND BIOMEDICAL ENGINEERING, 2016, 55 :196-200
[43]   Exciton-polariton laser [J].
Moskalenko, S. A. ;
Tiginyanu, I. M. .
LOW TEMPERATURE PHYSICS, 2016, 42 (05) :330-339
[44]   Gaussian potential driven dark soliton and their cloning in exciton-polariton condensates [J].
Hu, Junwei ;
Idrees, Muhammad ;
Zhang, Kun ;
Li, Hui-jun ;
Lin, Ji ;
Kavokin, Alexey .
PHYSICAL REVIEW B, 2025, 111 (16)
[45]   Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates [J].
Moxley, Frederick Ira, III ;
Dowling, Jonathan P. ;
Dai, Weizhong ;
Byrnes, Tim .
PHYSICAL REVIEW A, 2016, 93 (05)
[46]   Excitation of localized condensates in the flat band of the exciton-polariton Lieb lattice [J].
Sun, Meng ;
Savenko, I. G. ;
Flach, S. ;
Rubo, Y. G. .
PHYSICAL REVIEW B, 2018, 98 (16)
[47]   Sensitive detection of entanglement in exciton-polariton condensates via spin squeezing [J].
Feng, Jingyan ;
Ilo-Okeke, Ebubechukwu O. ;
Pyrkov, Alexey N. ;
Askitopoulos, Alexis ;
Byrnes, Tim .
PHYSICAL REVIEW A, 2021, 104 (01)
[48]   Optical Josephson oscillation achieved by two coupled exciton-polariton condensates [J].
Abdalla, A. S. ;
Zou, Bingsuo ;
Zhang, Yongyou .
OPTICS EXPRESS, 2020, 28 (07) :9136-9148
[49]   Blueshifted Flat Dispersion Relation of Exciton-Polariton Condensates in a CuBr Microcavity [J].
Nakayama, Masaaki ;
Murakami, Katsuya ;
Kim, DaeGwi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (05)
[50]   Stochastic polarization formation in exciton-polariton Bose-Einstein condensates [J].
Read, D. ;
Liew, T. C. H. ;
Rubo, Yuri G. ;
Kavokin, A. V. .
PHYSICAL REVIEW B, 2009, 80 (19)