Spatial quantization of exciton-polariton condensates in optically induced traps

被引:12
作者
Aladinskaia, Ekaterina [1 ]
Cherbunin, Roman [1 ]
Sedov, Evgeny [1 ,2 ,3 ,4 ]
Liubomirov, Alexey [1 ]
Kavokin, Kirill [1 ]
Khramtsov, Evgeny [1 ]
Petrov, Mikhail [1 ]
Savvidis, P. G. [2 ,3 ,5 ,6 ]
Kavokin, Alexey [1 ,2 ,3 ,7 ]
机构
[1] St Petersburg State Univ, Spin Opt Lab, Ulyanovskaya 1, St Petersburg 198504, Russia
[2] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[3] Westlake Inst Adv Study, Inst Nat Sci, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[4] Vladimir State Univ, Gorky St 87, Vladimir 600000, Russia
[5] FORTH IESL, POB 1527, Iraklion 71110, Crete, Greece
[6] Univ Crete, Dept Mat Sci & Technol, POB 2208, Iraklion 71003, Crete, Greece
[7] Moscow Inst Phys & Technol, Inst Skiy Pereulok 9, Dolgoprudnyi 141701, Moscow Region, Russia
关键词
BOSE-EINSTEIN CONDENSATION;
D O I
10.1103/PhysRevB.107.045302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the formation of exciton-polariton condensates in potlike traps created by optical pumping in a planar microcavity with embedded quantum wells. The trap is formed by a repulsive reservoir of incoherent excitons excited by a ring-shaped nonresonant laser beam. Polariton condensates confined in a trapping potential are subject to spatial confinement leading to energy quantization. We reveal experimentally the discrete spectrum of polariton eigenstates in an optical trap that can be characterized by a pair of quantum numbers, azimuthal and radial quantum numbers, that correspond to the number of nodes of a condensate wave function in the corresponding directions. The occupation numbers of the eigenstates of a polariton condensate are determined by the overlap integral of the condensate wave function and the exciton reservoir spatial density distribution. The nonresonant pumping scheme enables engineering the shape and size of the trap, that allows to selectively excite specific superpositions of the eigenstates of a polariton condensate in each experiment. We demonstrate both single-and multiple-mode polariton lasing in an optical trap.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Frequency Combs with Weakly Lasing Exciton-Polariton Condensates [J].
Rayanov, K. ;
Altshuler, B. L. ;
Rubo, Y. G. ;
Flach, S. .
PHYSICAL REVIEW LETTERS, 2015, 114 (19)
[22]   Hyperbolic spin vortices and textures in exciton-polariton condensates [J].
Manni, F. ;
Leger, Y. ;
Rubo, Y. G. ;
Andre, R. ;
Deveaud, B. .
NATURE COMMUNICATIONS, 2013, 4
[23]   Generation and Control of Shock Waves in Exciton-Polariton Condensates [J].
Wang, Jin-Ling ;
Wen, Wen ;
Lin, Ji ;
Li, Hui-Jun .
CHINESE PHYSICS LETTERS, 2023, 40 (07)
[24]   Materials and Cavity Design Principles for Exciton-Polariton Condensates [J].
Gomez-Dominguez, Martin ;
Kumar, Evan J. ;
Koch, Katherine A. ;
Kandada, Ajay Ram Srimath ;
Correa-Baena, Juan-Pablo .
ACS NANO, 2025, 19 (11) :10579-10588
[25]   Vortex-vortex control in exciton-polariton condensates [J].
Ma, Xuekai ;
Schumacher, Stefan .
PHYSICAL REVIEW B, 2017, 95 (23)
[26]   Edge trapping of exciton-polariton condensates in etched pillars [J].
Myers, D. M. ;
Wuenschell, J. K. ;
Ozden, B. ;
Beaumariage, J. ;
Snoke, D. W. ;
Pfeiffer, L. ;
West, K. .
APPLIED PHYSICS LETTERS, 2017, 110 (21)
[27]   Entanglement generation and detection in split exciton-polariton condensates [J].
Feng, Jingyan ;
Li, Hui ;
Sun, Zheng ;
Byrnes, Tim .
PHYSICAL REVIEW A, 2023, 108 (05)
[28]   Collective Excitations of Exciton-Polariton Condensates in a Synthetic Gauge Field [J].
Bieganska, D. ;
Pieczarka, M. ;
Estrecho, E. ;
Steger, M. ;
Snoke, D. W. ;
West, K. ;
Pfeiffer, L. N. ;
Syperek, M. ;
Truscott, A. G. ;
Ostrovskaya, E. A. .
PHYSICAL REVIEW LETTERS, 2021, 127 (18)
[29]   f-band condensates in exciton-polariton lattice systems [J].
Kim, Na Young ;
Kusudo, Kenichiro ;
Loeffler, Andreas ;
Hoefling, Sven ;
Forchel, Alfred ;
Yamamoto, Yoshihisa .
PHYSICAL REVIEW B, 2014, 89 (08)
[30]   Controllable structuring of exciton-polariton condensates in cylindrical pillar microcavities [J].
Kalevich, V. K. ;
Afanasiev, M. M. ;
Lukoshkin, V. A. ;
Solnyshkov, D. D. ;
Malpuech, G. ;
Kavokin, K. V. ;
Tsintzos, S. I. ;
Hatzopoulos, Z. ;
Savvidis, P. G. ;
Kavokin, A. V. .
PHYSICAL REVIEW B, 2015, 91 (04)