Re-sampling of multi-class imbalanced data using belief function theory and ensemble learning

被引:10
|
作者
Grina, Fares [1 ,2 ]
Elouedi, Zied [1 ]
Lefevre, Eric [2 ]
机构
[1] LARODEC, Inst Super Gest Tunis, Tunis, Tunisia
[2] Univ Artois, Lab Genie Informat & Automat Artois LGI2A, UR 3926, F-62400 Bethune, France
关键词
Imbalanced classification; Ensemble learning; Re-sampling; Evidence theory; CLASSIFICATION; SMOTE; PREDICTION;
D O I
10.1016/j.ijar.2023.02.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalanced classification refers to problems in which there are significantly more instances available for some classes than for others. Such scenarios require special attention because traditional classifiers tend to be biased towards the majority class which has a large number of examples. Different strategies, such as re-sampling, have been suggested to improve imbalanced learning. Ensemble methods have also been proven to yield promising results in the presence of class-imbalance. However, most of them only deal with binary imbalanced datasets. In this paper, we propose a re-sampling approach based on belief function theory and ensemble learning for dealing with class imbalance in the multi-class setting. This technique assigns soft evidential labels to each instance. This evidential modeling provides more information about each object's region, which improves the selection of objects in both undersampling and oversampling. Our approach firstly selects ambiguous majority instances for undersampling, then oversamples minority objects through the generation of synthetic examples in borderline regions to better improve minority class borders. Finally, to improve the induced results, the proposed re-sampling approach is incorporated into an evidential classifier-independent fusion-based ensemble. The comparative study against well-known ensemble methods reveals that our method is efficient according to the G-Mean and F1-score measures, independently from the chosen classifier. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Multi-class Ensemble Learning of Imbalanced Bidding Fraud Data
    Anowar, Farzana
    Sadaoui, Samira
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 352 - 358
  • [2] Multi-class WHMBoost: An ensemble algorithm for multi-class imbalanced data
    Zhao, Jiakun
    Jin, Ju
    Zhang, Yibo
    Zhang, Ruifeng
    Chen, Si
    INTELLIGENT DATA ANALYSIS, 2022, 26 (03) : 599 - 614
  • [3] Accurate and efficient sequential ensemble learning for highly imbalanced multi-class data
    Vong, Chi-Man
    Du, Jie
    NEURAL NETWORKS, 2020, 128 : 268 - 278
  • [4] A Dynamic Sampling Framework for Multi-Class Imbalanced Data
    Debowski, B.
    Areibi, S.
    Grewal, G.
    Tempelman, J.
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 2, 2012, : 113 - 118
  • [5] MULTI-CLASS DATA CLASSIFICATION FOR IMBALANCED DATA SET USING COMBINED SAMPLING APPROACHES
    Prachuabsupakij, Wanthanee
    Snonthornphisaj, Nuanwan
    KDIR 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2011, : 166 - 171
  • [6] A Hybrid Re-sampling Method for SVM Learning from Imbalanced Data Sets
    Li, Peng
    Qiao, Pei-Li
    Liu, Yuan-Chao
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 65 - 69
  • [7] Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier
    Rajesh, Kandala N. V. P. S.
    Dhuli, Ravindra
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 41 : 242 - 254
  • [8] Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data
    Zhang, Zhongliang
    Krawczyk, Bartosz
    Garcia, Salvador
    Rosales-Perez, Alejandro
    Herrera, Francisco
    KNOWLEDGE-BASED SYSTEMS, 2016, 106 : 251 - 263
  • [9] An online ensemble classification algorithm for multi-class imbalanced data stream
    Han, Meng
    Li, Chunpeng
    Meng, Fanxing
    He, Feifei
    Zhang, Ruihua
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (11) : 6845 - 6880
  • [10] An Effective Ensemble Method for Multi-class Classification and Regression for Imbalanced Data
    Alam, Tahira
    Ahmed, Chowdhury Farhan
    Zahin, Sabit Anwar
    Khan, Muhammad Asif Hossain
    Islam, Maliha Tashfia
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS (ICDM 2018), 2018, 10933 : 59 - 74