Toeplitz Determinants for a Certain Family of Analytic Functions Endowed with Borel Distribution

被引:7
作者
Wanas, Abbas Kareem [1 ]
Sakar, Fethiye Muge [2 ]
Oros, Georgia Irina [3 ]
Cotirla, Luminita-Ioana [4 ]
机构
[1] Univ Al Qadisiyah, Coll Sci, Dept Math, Al Diwaniyah 58001, Iraq
[2] Dicle Univ, Fac Econ & Adm Sci, Dept Management, TR-21280 Diyarbakir, Turkiye
[3] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[4] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
analytic functions; univalent functions; coefficient estimates; Toeplitz matrices; Borel distribution; STARLIKE FUNCTIONS; COEFFICIENTS; MATRICES; SUBCLASS; ELEMENTS;
D O I
10.3390/sym15020262
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we derive coefficient bounds for the symmetric Toeplitz matrices T-2(2), T-2(3), T-3(1), and T-3(2), which are the known first four determinants for a new family of analytic functions with Borel distribution series in the open unit disk U. Further, some special cases of results obtained are also pointed.
引用
收藏
页数:9
相关论文
共 23 条
[1]  
Akgul A., 2022, SYMMETRY-BASEL, V11, P228
[2]   Hankel, Toeplitz, and Hermitian-Toeplitz Determinants for Certain Close-to-convex Functions [J].
Allu, Vasudevarao ;
Lecko, Adam ;
Thomas, Derek K. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
[3]  
Altinkaya S., 2017, Anal. Univ. Orad Fasc. Mat., V24, P5
[4]   Fekete-Szego Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials [J].
Caglar, Murat ;
Cotirla, Luminita-Ioana ;
Buyankara, Mucahit .
SYMMETRY-BASEL, 2022, 14 (08)
[5]   Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions [J].
Cotirla, Luminita-Ioana ;
Wanas, Abbas Kareem .
SYMMETRY-BASEL, 2022, 14 (07)
[6]   Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions [J].
El-Deeb, Sheeza M. ;
Bulboaca, Teodor ;
Dziok, Jacek .
KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (02) :301-314
[7]  
Grenander U., 1958, Toeplitz forms and their applications
[8]   ON BOUNDS OF TOEPLITZ DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS [J].
Kamali, Muhammet ;
Riskulova, Alina .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 14 (03) :36-48
[9]  
Nazeer W., 2019, J. Comput. Anal. Appl., V26, P11
[10]  
Pommerenke C., 1975, Univalent functions