Bianchi period polynomials: Hecke action and congruences

被引:0
作者
Combes, Lewis [1 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Sheffield, England
基金
英国工程与自然科学研究理事会;
关键词
Bianchi modular forms; Congruences; Hecke operators; CUSP FORMS; COHOMOLOGY; VALUES; GL(2);
D O I
10.1007/s40993-024-00513-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma = PSL 2 ( O ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ={{\,\mathrm{\textrm{PSL}}\,}}_2(\mathcal {O})$$\end{document} be a Bianchi group associated to one of the five Euclidean imaginary quadratic fields. We show that the space of weight k period polynomials for Gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is "dual" to the space of weight k modular symbols for Gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} , reflecting the duality between the first and second cohomology groups of the arithmetic group Gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} . Using this result, we describe the action of Hecke operators on the space of period polynomials for Gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} via the Heilbronn matrices. As in the classical case, spaces of Bianchi period polynomials are related to parabolic cohomology of Bianchi groups, and in turn, via the Eichler-Shimura-Harder Isomorphism, to spaces of Bianchi modular forms. In the second part of the paper, we numerically investigate congruences between level 1 Bianchi eigenforms via computer programs which implement the above mentioned Hecke action on spaces of Bianchi period polynomials. Computations with the Hecke action are used to indicate moduli of congruences between the underlying Bianchi forms; we then prove the congruences using the period polynomials. From this we find congruences between genuine Bianchi modular forms and both a base-change Bianchi form and an Eisenstein series. We believe these congruences are the first of their kind in the literature.
引用
收藏
页数:23
相关论文
共 22 条