Total graph of a lattice

被引:0
作者
Gadge, Pravin [1 ]
Joshi, Vinayak [2 ]
机构
[1] GESs Shri Bhausaheb Vartak Arts Commerce & Sci Col, ,, Borivali 400091, Maharashtra, India
[2] Savitribai Phule Pune Univ, Dept Math, Pune 411007, Maharashtra, India
关键词
Zero-divisor graph; Total graph; Pseudocomplemented poset; Reduced ring; Perfect graph; Comaximal ideal graph; Co-annihilating ideal graph; ZERO-DIVISOR GRAPH; SEMIPRIME IDEALS; COMPLEMENT;
D O I
10.1007/s13226-024-00551-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the study of the subgraph T(Z*(L))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(Z<^>*(L))$$\end{document} of the total graph T(L) of a lattice L is essentially the study of the zero-divisor graph of a poset. Also, we prove that the graph Tc(Z*(L))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>c(Z<^>*(L))$$\end{document} is weakly perfect whereas T(Z*(L))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(Z<^>*(L))$$\end{document} is not weakly perfect. The graph T(Z*(L))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(Z<^>*(L))$$\end{document} and its complement Tc(Z*(L))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>c(Z<^>*(L))$$\end{document} are shown to be a perfect graph if and only if L has at most four atoms. In the concluding section, we establish that, in the context of a commutative reduced ring R, the total graph, the annihilating ideal graph, the complement of the co-annihilating ideal graph, and the complement of the comaximal ideal graph coincide.
引用
收藏
页数:14
相关论文
共 28 条
  • [1] A graph associated to a lattice
    Afkhami M.
    Barati Z.
    Khashyarmanesh K.
    [J]. Ricerche di Matematica, 2014, 63 (1) : 67 - 78
  • [2] Perfectness of a graph associated with annihilating ideals of a ring
    Aghapouramin, V.
    Nikmehr, M. J.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [3] The Co-annihilating-ideal Graphs of Commutative Rings
    Akbari, Saeeid
    Alilou, Abbas
    Amjadi, Jafar
    Sheikholeslami, Eyed Mahmoud
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 3 - 11
  • [4] On the diameter and girth of zero-divisor graphs of posets
    Alizadeh, M.
    Das, A. K.
    Maimani, H. R.
    Pournaki, M. R.
    Yassemi, S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (09) : 1319 - 1324
  • [5] The total graph of a commutative ring
    Anderson, David F.
    Badawi, Ayman
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (07) : 2706 - 2719
  • [6] Atani SE, 2018, CATEG GEN ALGEBRAIC, V9, P15
  • [7] Atiyah Michael Francis, 1969, INTRO COMMUTATIVE AL
  • [8] Balasubramani P, 2001, INDIAN J PURE AP MAT, V32, P315
  • [9] ON SEMIPRIME IDEALS IN LATTICES
    BERAN, L
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 64 (03) : 223 - 227
  • [10] Berge C., 1963, Perfect graphs. Six Papers on Graph Theory, P1