Hydrogen catalytic performance of hybrid Fe3O4/FeS2/g-C3N4 nanocomposite structures

被引:7
作者
Alshammari, Majed [1 ]
Alhassan, Sultan [1 ]
Alshammari, Khulaif [1 ]
Alotaibi, Turki [1 ]
Alshammari, Alhulw H. [1 ]
Alotibi, Satam [2 ]
Taha, Taha Abdel Mohaymen [1 ]
Ismael, Ali [3 ]
机构
[1] Jouf Univ, Phys Dept, Coll Sci, POB 2014, Sakaka, Saudi Arabia
[2] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Phys, Al Kharj 11942, Saudi Arabia
[3] Univ Lancaster, Phys Dept, Lancaster LA1 4YB, England
关键词
NaBH4; Fe3O4/FeS2; nanosheet; Hydrogen production; Methanolysis; GRAPHITIC CARBON NITRIDE; SODIUM-BOROHYDRIDE; EVOLUTION; G-C3N4; DEHYDROGENATION; NANOSHEET; OXIDE;
D O I
10.1016/j.diamond.2023.110214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, Fe3O4/FeS2/g-C3N4 nanocomposites were developed for catalytic hydrogen generation from sodium borohydride. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and environmental scanning electron microscopy (ESEM) were used to analyze these nanocomposites. The XRD diffraction peaks of Fe3O4 and FeS2 cubic phase showed an average crystal size of calculation of 15 and 20 nm. ESEM micrographs showed a 2D broken up sheet structure having more edge sites. The BET surface areas for S@g-C3N4, 1.0, 2.0, and 3.0 wt% Fe3O4/FeS2 were 40, 109, 137 and 162 m(2)/g, respectively. Even though Fe3O4/FeS2 were incorporated into the nanosheet, the pore size was increased from 2.0 to 2.15 nm. S@g-C3N4 has an average band gap of 2.60 eV that decreased to 2.30, 2.21 and 2.18 eV at 1.0, 2.0 and 3.0 wt% of FeS2. In addition, Fe3O4/FeS2/g-C3N4 nanosheets showed an emission band at 460 nm. Moreover, the intensity of this band decreased as the content of Fe3O4/FeS2 reached 3.0 wt%. The rate of hydrogen production is accelerated as the percentage of Fe3O4/FeS2 increased from 1.0 to 3.0 wt%. The sample 3.0 wt% Fe3O4/FeS2 showed the best rate of hydrogen production (8480 mL/g.min).
引用
收藏
页数:8
相关论文
共 58 条
[31]   Phase-Dependent MoS2 Nanoflowers for Light-Driven Antibacterial Application [J].
Mutalik, Chinmaya ;
Krisnawati, Dyah Ika ;
Patil, Shivaraj B. ;
Khafid, Muhamad ;
Atmojo, Didik Susetiyanto ;
Santoso, Puguh ;
Lu, Ssu-Chiao ;
Wang, Di-Yan ;
Kuo, Tsung-Rong .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (23) :7904-7912
[32]   High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO2-FeS2 Nanocomposites [J].
Mutalik, Chinmaya ;
Hsiao, Yu-Cheng ;
Chang, Yi-Hsuan ;
Krisnawati, Dyah Ika ;
Alimansur, Moh ;
Jazidie, Achmad ;
Nuh, Mohammad ;
Chang, Chia-Che ;
Wang, Di-Yan ;
Kuo, Tsung-Rong .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 :8911-8920
[33]   Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2 [J].
Rong, Xinshan ;
Qiu, Fengxian ;
Rong, Jian ;
Zhu, Xiaolu ;
Yan, Jie ;
Yang, Dongya .
MATERIALS LETTERS, 2016, 164 :127-131
[34]   A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions [J].
Roslan, Nurul Asmawati ;
Abidin, Sumaiya Zainal ;
Ideris, Asmida ;
Vo, Dai-Viet N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (36) :18466-18489
[40]   Efficient and durable H2 production from NaBH4 methanolysis using N doped hybrid g-C3N4-SiO2 composites with ammonia as a nitrogen source [J].
Saka, Cafer .
FUEL, 2022, 324