IntelliGenes: a novel machine learning pipeline for biomarker discovery and predictive analysis using multi-genomic profiles

被引:21
作者
Degroat, William [1 ]
Mendhe, Dinesh [1 ]
Bhusari, Atharva [1 ]
Abdelhalim, Habiba [1 ]
Zeeshan, Saman [2 ]
Ahmed, Zeeshan [1 ,3 ,4 ]
机构
[1] Rutgers State Univ, Rutgers Inst Hlth Hlth Care Policy & Aging Res, New Brunswick, NJ 08901 USA
[2] Rutgers State Univ, Rutgers Canc Inst New Jersey, New Brunswick, NJ 08901 USA
[3] Rutgers Robert Wood Johnson Med Sch, Dept Environm & Occupat Med, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Rutgers Inst Hlth Hlth Care Policy & Aging Res, 112 Paterson St, New Brunswick, NJ 08901 USA
关键词
D O I
10.1093/bioinformatics/btad755
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this article, we present IntelliGenes, a novel machine learning (ML) pipeline for the multi-genomics exploration to discover biomarkers significant in disease prediction with high accuracy. IntelliGenes is based on a novel approach, which consists of nexus of conventional statistical techniques and cutting-edge ML algorithms using multi-genomic, clinical, and demographic data. IntelliGenes introduces a new metric, i.e. Intelligent Gene (I-Gene) score to measure the importance of individual biomarkers for prediction of complex traits. I-Gene scores can be utilized to generate I-Gene profiles of individuals to comprehend the intricacies of ML used in disease prediction. IntelliGenes is user-friendly, portable, and a cross-platform application, compatible with Microsoft Windows, macOS, and UNIX operating systems. IntelliGenes not only holds the potential for personalized early detection of common and rare diseases in individuals, but also opens avenues for broader research using novel ML methodologies, ultimately leading to personalized interventions and novel treatment targets. Availability and implementation: The source code of IntelliGenes is available on GitHub (https://github.com/drzeeshanahmed/intelligenes) and Code Ocean (https://codeocean.com/capsule/8638596/tree/v1).
引用
收藏
页数:5
相关论文
共 15 条
[1]  
Ahmed Z, 2022, PROG MOL BIOL TRANSL, V190, P101, DOI 10.1016/bs.pmbts.2022.02.002
[2]   Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine [J].
Ahmed, Zeeshan ;
Mohamed, Khalid ;
Zeeshan, Saman ;
Dong, Xinqi .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
[3]   Genetic Mapping in Human Disease [J].
Altshuler, David ;
Daly, Mark J. ;
Lander, Eric S. .
SCIENCE, 2008, 322 (5903) :881-888
[4]  
Degroat W, 2023, bioRxiv, DOI [10.1101/2023.09.08.553995, 10.1101/2023.09.08.553995, DOI 10.1101/2023.09.08.553995]
[5]   Hygieia: AI/ML pipeline integrating healthcare and genomics data to investigate genes associated with targeted disorders and predict disease [J].
DeGroat, William ;
Venkat, Vignesh ;
Pierre-Louis, Widnie ;
Abdelhalim, Habiba ;
Ahmed, Zeeshan .
SOFTWARE IMPACTS, 2023, 16
[6]   Machine Learning-Based Gene Prioritization Identifies Novel Candidate Risk Genes for Inflammatory Bowel Disease [J].
Isakov, Ofer ;
Dotan, Iris ;
Ben-Shachar, Shay .
INFLAMMATORY BOWEL DISEASES, 2017, 23 (09) :1516-1523
[7]   Machine learning approaches to predict lupus disease activity from gene expression data [J].
Kegerreis, Brian ;
Catalina, Michelle D. ;
Bachali, Prathyusha ;
Geraci, Nicholas S. ;
Labonte, Adam C. ;
Zeng, Chen ;
Stearrett, Nathaniel ;
Crandall, Keith A. ;
Lipsky, Peter E. ;
Grammer, Amrie C. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms [J].
Maniruzzaman, Md ;
Rahman, Md Jahanur ;
Ahammed, Benojir ;
Abedin, Md Menhazul ;
Suri, Harman S. ;
Biswas, Mainak ;
El-Baz, Ayman ;
Bangeas, Petros ;
Tsoulfas, Georgios ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 176 :173-193
[9]   Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data [J].
Schaack, Dominik ;
Weigand, Markus A. ;
Uhle, Florian .
PLOS ONE, 2021, 16 (05)
[10]   Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine [J].
Vadapalli, Sreya ;
Abdelhalim, Habiba ;
Zeeshan, Saman ;
Ahmed, Zeeshan .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)