Simulation of mass spectrometry-based proteomics data with Synthedia

被引:2
|
作者
Leeming, Michael G. [1 ]
Ang, Ching-Seng [1 ]
Nie, Shuai [1 ]
Varshney, Swati [1 ]
Williamson, Nicholas A. [1 ]
机构
[1] Univ Melbourne, Bio21 Mol Sci & Biotechnol Inst, Melbourne Mass Spectrometry & Prote Facil, Melbourne, Vic 3052, Australia
来源
BIOINFORMATICS ADVANCES | 2023年 / 3卷 / 01期
关键词
3D PROTEIN MODELS; MOLECULAR-DYNAMICS; REFINEMENT; QUALITY; SERVER;
D O I
10.1093/bioadv/vbac096
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation A large number of experimental and bioinformatic parameters must be set to identify and quantify peptides in mass spectrometry experiments and each of these will impact the results. An ability to simulate raw data with known contents would allow researchers to rapidly explore the effects of varying experimental parameters and systematically investigate downstream processing software. A range of data simulators are available for established data-dependent acquisition methodologies, but these do not extend to the rapidly developing field of data-independent acquisition (DIA) strategies.Results Here, we present Synthedia-a software package to simulate DIA liquid chromatography-mass spectrometry for bottom-up proteomics experiments. Synthedia can generate datasets with known peptide precursor ions and fragments and allows for the customization of a wide variety of chromatographic and mass spectrometry parameters.Availability and implementation Synthedia is freely available via the internet and can be used through a graphical website (https://synthedia.org/) or locally via the command line (https://github.com/mgleeming/synthedia/).Supplementary information are available at Bioinformatics Advances online.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] The mzQuantML Data Standard for Mass Spectrometry-based Quantitative Studies in Proteomics
    Walzer, Mathias
    Qi, Da
    Mayer, Gerhard
    Uszkoreit, Julian
    Eisenacher, Martin
    Sachsenberg, Timo
    Gonzalez-Galarza, Faviel F.
    Fan, Jun
    Bessant, Conrad
    Deutsch, Eric W.
    Reisinger, Florian
    Vizcaino, Juan Antonio
    Medina-Aunon, J. Alberto
    Albar, Juan Pablo
    Kohlbacher, Oliver
    Jones, Andrew R.
    MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (08) : 2332 - 2340
  • [22] Web Resources for Mass Spectrometry-based Proteomics
    Tao Chen
    Jie Zhao
    Jie Ma
    Yunping Zhu
    Genomics,Proteomics & Bioinformatics, 2015, (01) : 36 - 39
  • [23] Microfluidic chips for mass spectrometry-based proteomics
    Lee, Jeonghoon
    Soper, Steven A.
    Murray, Kermit K.
    JOURNAL OF MASS SPECTROMETRY, 2009, 44 (05): : 579 - 593
  • [24] Cancer metabolism and mass spectrometry-based proteomics
    Zhou, Weidong
    Liotta, Lance A.
    Petricoin, Emanuel F.
    CANCER LETTERS, 2015, 356 (02) : 176 - 183
  • [25] Mass spectrometry-based proteomics for systems biology
    Sabido, Eduard
    Selevsek, Nathalie
    Aebersold, Ruedi
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) : 591 - 597
  • [26] Amyloidosis in the Era of Mass Spectrometry-Based Proteomics
    Thong Huy Cao
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (15) : 1882 - 1882
  • [27] Computational Methods in Mass Spectrometry-Based Proteomics
    Li, Sujun
    Tang, Haixu
    TRANSLATIONAL BIOMEDICAL INFORMATICS: A PRECISION MEDICINE PERSPECTIVE, 2016, 939 : 63 - 89
  • [28] Mass spectrometry-based proteomics in the life sciences
    Lane, CS
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (7-8) : 848 - 869
  • [29] Analytical Platforms for Mass Spectrometry-Based Proteomics
    Ishihama, Yasushi
    CHROMATOGRAPHY, 2019, 40 (03) : 89 - 97
  • [30] Characterizing citrullination by mass spectrometry-based proteomics
    Rebak, A. S.
    Hendriks, I. A.
    Nielsen, M. L.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2023, 378 (1890)