A review of the current status and future directions of research on subspace clustering feature selection

被引:0
作者
Song, Xinyu [1 ]
Wang, Xiujuan [1 ]
机构
[1] Beijing Univ Technol, Chinese, Beijing 100124, Peoples R China
来源
2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS | 2023年
基金
北京市自然科学基金;
关键词
Feature Selection; Subspace; Clustering; LOW-RANK; SEGMENTATION; ROBUST;
D O I
10.1109/DDCLS58216.2023.10166812
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection reduces the dimensionality of high-dimensional data by removing redundant or irrelevant features from the original features, thus reducing the negative impact of the "dimensionality curse." Subspace clustering feature selection methods focus on the structure and properties within the dataset, so they perform well in unsupervised feature selection work. In this paper, we sort out and classify the research on subspace clustering feature selection and propose several future research trends based on the current status of feature selection in subspace clustering.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 92 条
  • [1] Non-parametric classifier-independent feature selection
    Abe, N
    Kudo, M
    [J]. PATTERN RECOGNITION, 2006, 39 (05) : 737 - 746
  • [2] A Review of the Modification Strategies of the Nature Inspired Algorithms for Feature Selection Problem
    Abu Khurma, Ruba
    Aljarah, Ibrahim
    Sharieh, Ahmad
    Abd Elaziz, Mohamed
    Damasevicius, Robertas
    Krilavicius, Tomas
    [J]. MATHEMATICS, 2022, 10 (03)
  • [3] Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019)
    Agrawal, Prachi
    Abutarboush, Hattan F.
    Ganesh, Talari
    Mohamed, Ali Wagdy
    [J]. IEEE ACCESS, 2021, 9 : 26766 - 26791
  • [4] Ahmad Rami, 2021, SENSORS-BASEL, V21
  • [5] A review of feature selection techniques in sentiment analysis
    Ahmad, Siti Rohaidah
    Abu Bakar, Azuraliza
    Yaakub, Mohd Ridzwan
    [J]. INTELLIGENT DATA ANALYSIS, 2019, 23 (01) : 159 - 189
  • [6] Albuquerque A, 2018, IEEE IJCNN, P814
  • [7] Review of Feature Selection, Dimensionality Reduction and Classification for Chronic Disease Diagnosis
    Alhassan, Afnan M.
    Zainon, Wan Mohd Nazmee Wan
    [J]. IEEE ACCESS, 2021, 9 : 87310 - 87317
  • [8] Ambusaidi MA, 2015, 2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, P295, DOI [10.1109/Trustcom-2015.387, 10.1109/Trustcom.2015.387]
  • [9] An Innovative Multi-Model Neural Network Approach for Feature Selection in Emotion Recognition Using Deep Feature Clustering
    Asghar, Muhammad Adeel
    Khan, Muhammad Jamil
    Rizwan, Muhammad
    Mehmood, Raja Majid
    Kim, Sun-Hee
    [J]. SENSORS, 2020, 20 (13) : 1 - 21
  • [10] Optimization with Sparsity-Inducing Penalties
    Bach, Francis
    Jenatton, Rodolphe
    Mairal, Julien
    Obozinski, Guillaume
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (01): : 1 - 106