Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data

被引:44
作者
Bhuyan, Kushanav [1 ,2 ]
Tanyas, Hakan [2 ]
Nava, Lorenzo [1 ]
Puliero, Silvia [1 ]
Meena, Sansar Raj [1 ,2 ]
Floris, Mario [1 ]
van Westen, Cees [2 ]
Catani, Filippo [1 ]
机构
[1] Univ Padua, Dept Geosci, Machine Intelligence & Slope Stabil Lab, I-35131 Padua, Italy
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Ctr Disaster Resilience, Dept Appl Earth Sci, NL-7514 AE Enschede, Netherlands
关键词
2008 WENCHUAN EARTHQUAKE; PATH DEPENDENCY; GORKHA EARTHQUAKE; SUSCEPTIBILITY; CLASSIFICATION; HAZARD; PREDICTION; DERIVATION; FAILURE; AREAS;
D O I
10.1038/s41598-022-27352-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping of landslides over space has seen an increasing attention and good results in the last decade. While current methods are chiefly applied to generate event-inventories, whereas multi-temporal (MT) inventories are rare, even using manual landslide mapping. Here, we present an innovative deep learning strategy which employs transfer learning that allows for the Attention Deep Supervision Multi-Scale U-Net model to be adapted for landslide detection tasks in new areas. The method also provides the flexibility of re-training a pretrained model to detect both rainfall- and earthquake-triggered landslides on new target areas. For the mapping, we used archived Planet Lab remote sensing images spanning a period between 2009 till 2021 with spatial resolution of 3-5 m to systematically generate MT landslide inventories. When we examined all cases, our approach provided an average F1 score of 0.8 indicating that we successfully identified the spatiotemporal occurrences of landslides. To examine the size distribution of mapped landslides we compared the frequency-area distributions of predicted co-seismic landslides with manually mapped products from the literature. Results showed a good match between calculated power-law exponents where the difference ranges between 0.04 and 0.21. Overall, this study showed that the proposed algorithm could be applied to large areas to generate polygon-based MT landslide inventories.
引用
收藏
页数:26
相关论文
共 105 条
[31]   Using multiresolution and multitemporal satellite data for post-disaster landslide inventory in the Republic of Serbia [J].
Duric, Dragana ;
Mladenovic, Ana ;
Pesic-Georgiadis, Milica ;
Marjanovic, Milos ;
Abolmasov, Biljana .
LANDSLIDES, 2017, 14 (04) :1467-1482
[32]  
EM-DAT. EM-DAT, 2019, PREPRINT
[33]  
Fan X.M., 2017, GEOENVIRONMENTAL DIS, V4, P12, DOI [10.1186/s40677-017-0079-8, DOI 10.1186/S40677-017-0079-8]
[34]   Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments [J].
Fan, Xuanmei ;
Yunus, Ali P. ;
Scaringi, Gianvito ;
Catani, Filippo ;
Siva Subramanian, Srikrishnan ;
Xu, Qiang ;
Huang, Runqui .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (01)
[35]   Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake [J].
Fan, Xuanmei ;
Scaringi, Gianvito ;
Domenech, Guillem ;
Yang, Fan ;
Guo, Xiaojun ;
Dai, Lanxin ;
He, Chaoyang ;
Xu, Qiang ;
Huang, Runqiu .
EARTH SYSTEM SCIENCE DATA, 2019, 11 (01) :35-55
[36]   What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges [J].
Fan, Xuanmei ;
Juang, C. Hsein ;
Wasowski, Janusz ;
Huang, Runqiu ;
Xu, Qiang ;
Scaringi, Gianvito ;
van Westen, Cees J. ;
Havenith, Hans-Balder .
ENGINEERING GEOLOGY, 2018, 241 :25-32
[37]   Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images [J].
Fiorucci, F. ;
Cardinali, M. ;
Carla, R. ;
Rossi, M. ;
Mondini, A. C. ;
Santurri, L. ;
Ardizzone, F. ;
Guzzetti, F. .
GEOMORPHOLOGY, 2011, 129 (1-2) :59-70
[38]   A spatially explicit database of wind disturbances in European forests over the period 2000-2018 [J].
Forzieri, Giovanni ;
Pecchi, Matteo ;
Girardello, Marco ;
Mauri, Achille ;
Klaus, Marcus ;
Nikolov, Christo ;
Ruetschi, Marius ;
Gardiner, Barry ;
Tomastik, Julian ;
Small, David ;
Nistor, Constantin ;
Jonikavicius, Donatas ;
Spinoni, Jonathan ;
Feyen, Luc ;
Giannetti, Francesca ;
Comino, Rinaldo ;
Wolynski, Alessandro ;
Pirotti, Francesco ;
Maistrelli, Fabio ;
Savulescu, Ionut ;
Wurpillot-Lucas, Stephanie ;
Karlsson, Stefan ;
Zieba-Kulawik, Karolina ;
Strejczek-Jazwinska, Paulina ;
Mokros, Martin ;
Franz, Stefan ;
Krejci, Lukas ;
Haidu, Ionel ;
Nilsson, Mats ;
Wezyk, Piotr ;
Catani, Filippo ;
Chen, Yi-Ying ;
Luyssaert, Sebastiaan ;
Chirici, Gherardo ;
Cescatti, Alessandro ;
Beck, Pieter S. A. .
EARTH SYSTEM SCIENCE DATA, 2020, 12 (01) :257-276
[39]   Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection [J].
Ghorbanzadeh, Omid ;
Blaschke, Thomas ;
Gholamnia, Khalil ;
Meena, Sansar Raj ;
Tiede, Dirk ;
Aryal, Jagannath .
REMOTE SENSING, 2019, 11 (02)
[40]   Automated derivation and spatio-temporal analysis of landslide properties in southern Kyrgyzstan [J].
Golovko, Darya ;
Roessner, Sigrid ;
Behling, Robert ;
Kleinschmit, Birgit .
NATURAL HAZARDS, 2017, 85 (03) :1461-1488