Hyperspectral Image Super-Resolution Network Based on Cross-Scale Nonlocal Attention

被引:13
|
作者
Li, Shuangliang [1 ,2 ]
Tian, Yugang [1 ,2 ]
Wang, Cheng [1 ,2 ]
Wu, Hongxian [2 ]
Zheng, Shaolan [2 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] Minist Nat Resources, Key Lab Nat Resources Monitoring Trop & Subtrop A, Guangzhou 510620, Peoples R China
关键词
Spatial resolution; Feature extraction; Superresolution; Hyperspectral imaging; Image reconstruction; Image fusion; Fuses; Cross-scale; hyperspectral image (HSI) fusion; huge resolution difference; nonlocal attention; FUSION; QUALITY; MS;
D O I
10.1109/TGRS.2023.3269074
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) super-resolution generally means the fusion of low-spatial-resolution HSI (LRHSI) and high-spatial-resolution multispectral/panchromatic image (HRMPI) to get high-spatial-resolution HSI (HRHSI). Existing fusion methods have not sufficiently considered the huge spectral and spatial resolution difference between the LRHSI and HRMPI. In addition, most deep learning (DL)-based methods that adopt the convolutional neural network (CNN) structure are limited by its local feature learning, and it is difficult to exploit the global dependence of image features. To fully adapt to the huge modality difference between LRHSI and HRMPI and release the limitation of local feature learning, we design the cross spectral-scale and shift-window-based cross spatial-scale nonlocal attention network (CSSNet) to effectively fuse the LRHSI and HRMPI. These two networks could explicitly learn the spectral and spatial correlations between two input images. These correlations are then used to reconstruct the HRHSI feature, which makes the obtained HRHSI feature to maintain the spectral and spatial feature consistency with the input images. Finally, a "feature aggregation module" is designed to aggregate the image features from these two networks and output the fused HRHSI. Extensive experimental results on both HM-fusion [fusion with multispectral (MSI)] and HP-fusion (fusion with panchromatic (PAN) image) tasks demonstrate CSSNet's state-of-the-art (SOTA) performance compared to other fusion methods. The codes could be available at https://github.com/rs-lsl/CSSNet.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Pansharpening via Super-Resolution Iterative Residual Network With a Cross-Scale Learning Strategy
    Chen, Shiyu
    Qi, Hua
    Nan, Ke
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [43] External-Internal Attention for Hyperspectral Image Super-Resolution
    Guo, Zhiling
    Xin, Jingwei
    Wang, Nannan
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Hyperspectral Image Super-Resolution Network of Local-Global Attention Feature Reuse
    Size, Wang
    Xin, Guan
    Qiang, Li
    ACTA OPTICA SINICA, 2023, 43 (21)
  • [45] Nonnegative and Nonlocal Sparse Tensor Factorization-Based Hyperspectral Image Super-Resolution
    Wan, Wei
    Guo, Weihong
    Huang, Haiyang
    Liu, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12): : 8384 - 8394
  • [46] Bayesian Nonlocal Patch Tensor Factorization for Hyperspectral Image Super-Resolution
    Ye, Fei
    Wu, Zebin
    Jia, Xiuping
    Chanussot, Jocelyn
    Xu, Yang
    Wei, Zhihui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5877 - 5892
  • [47] Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Wei, Zhihui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 3034 - 3047
  • [48] Cross Transformer Network for Scale-Arbitrary Image Super-Resolution
    He, Dehong
    Wu, Song
    Liu, Jinpeng
    Xiao, Guoqiang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 633 - 644
  • [49] Image Super-Resolution Reconstruction Based on Lightweight Multi-Scale Channel Attention Network
    Zhou D.-W.
    Li W.-B.
    Li J.-X.
    Huang Z.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2336 - 2346
  • [50] Attention augmented multi-scale network for single image super-resolution
    Xiong, Chengyi
    Shi, Xiaodi
    Gao, Zhirong
    Wang, Ge
    APPLIED INTELLIGENCE, 2021, 51 (02) : 935 - 951