Hyperspectral Image Super-Resolution Network Based on Cross-Scale Nonlocal Attention

被引:18
作者
Li, Shuangliang [1 ,2 ]
Tian, Yugang [1 ,2 ]
Wang, Cheng [1 ,2 ]
Wu, Hongxian [2 ]
Zheng, Shaolan [2 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] Minist Nat Resources, Key Lab Nat Resources Monitoring Trop & Subtrop A, Guangzhou 510620, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Spatial resolution; Feature extraction; Superresolution; Hyperspectral imaging; Image reconstruction; Image fusion; Fuses; Cross-scale; hyperspectral image (HSI) fusion; huge resolution difference; nonlocal attention; FUSION; QUALITY; MS;
D O I
10.1109/TGRS.2023.3269074
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) super-resolution generally means the fusion of low-spatial-resolution HSI (LRHSI) and high-spatial-resolution multispectral/panchromatic image (HRMPI) to get high-spatial-resolution HSI (HRHSI). Existing fusion methods have not sufficiently considered the huge spectral and spatial resolution difference between the LRHSI and HRMPI. In addition, most deep learning (DL)-based methods that adopt the convolutional neural network (CNN) structure are limited by its local feature learning, and it is difficult to exploit the global dependence of image features. To fully adapt to the huge modality difference between LRHSI and HRMPI and release the limitation of local feature learning, we design the cross spectral-scale and shift-window-based cross spatial-scale nonlocal attention network (CSSNet) to effectively fuse the LRHSI and HRMPI. These two networks could explicitly learn the spectral and spatial correlations between two input images. These correlations are then used to reconstruct the HRHSI feature, which makes the obtained HRHSI feature to maintain the spectral and spatial feature consistency with the input images. Finally, a "feature aggregation module" is designed to aggregate the image features from these two networks and output the fused HRHSI. Extensive experimental results on both HM-fusion [fusion with multispectral (MSI)] and HP-fusion (fusion with panchromatic (PAN) image) tasks demonstrate CSSNet's state-of-the-art (SOTA) performance compared to other fusion methods. The codes could be available at https://github.com/rs-lsl/CSSNet.
引用
收藏
页数:15
相关论文
共 74 条
[1]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[2]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[3]  
Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
[4]   Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :63-78
[5]  
Bandara W. G. C., 2022, P IEEE CVF C COMP VI, P1767
[6]   Hyperspectral Pansharpening Based on Improved Deep Image Prior and Residual Reconstruction [J].
Bandara, Wele Gedara Chaminda ;
Valanarasu, Jeya Maria Jose ;
Patel, Vishal M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[7]  
[岑奕 Cen Yi], 2020, [遥感学报, Journal of Remote Sensing], V24, P1299
[8]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[9]   Deep Hyperspectral Image Sharpening [J].
Dian, Renwei ;
Li, Shutao ;
Guo, Anjing ;
Fang, Leyuan .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) :5345-5355
[10]   Hyperspectral image super-resolution via non-local sparse tensor factorization [J].
Dian, Renwei ;
Fang, Leyuan ;
Li, Shutao .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3862-3871