2D MXene-Based Electron Transport Layers for Nonhalogenated Solvent-Processed Stable Organic Solar Cells

被引:18
作者
Aryal, Um Kanta [1 ,2 ]
Pazniak, Hanna [3 ]
Kumari, Tanya [1 ,2 ]
Weber, Matthieu [3 ]
Johansson, Fredrik O. L.
Vannucchi, Noemi [4 ]
Witkowski, Nadine
Turkovic, Vida [1 ,2 ]
Di Carlo, Aldo [5 ,6 ,7 ,8 ]
Madsen, Morten [1 ,2 ]
机构
[1] Univ Southern Denmark, Mads Clausen Inst, Ctr Adv Photovolta & Thin Film Energy Devices SDU, DK-6400 Sonderborg, Denmark
[2] Univ Southern Denmark, SDU Climate Cluster, DK-5230 Odense, Denmark
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LMGP, CS 50257, 50257,, F-38016 Grenoble 1, France
[4] KTH Royal Inst Technol, Div Appl Phys Chem, S-11428 Stockholm, Sweden
[5] Sorbonne Univ, Inst Nanosci Paris, UMR CNRS 7588, F-75005 Paris, France
[6] Uppsala Univ, Dept Phys & Astron, Div X ray Photon Sci, S-75120 Uppsala, Sweden
[7] Ist Struttura Mat, CNR ISM, I-00133 Rome, Italy
[8] CHOSE Ctr Hybrid & Organ Solar Energy, Dept Elect Engn Univ Rome Tor Vergata, I-00133 Rome, Italy
基金
瑞典研究理事会;
关键词
organic solar cells; MXene; hard X-ray photoelectron spectroscopy (HAXPES); nonhalogenated solvents; nonfullerene acceptors; organic solar cell stability; POLYMER; PERFORMANCE; ADHESION; ENERGY; DONOR; ZNO;
D O I
10.1021/acsaem.2c03789
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Implementation of 2D materials is one of the promising routes for improving the efficiency and stability of organic solar cells (OSCs). Due to their tunable optical and electronic properties, MXenes, a family of 2D transition metal carbides and nitrides, have attracted considerable attention and demonstrated their potential for next-generation solar cells. In this work, Ti3C2Tx MXene was added into ZnO precursors and applied as a modified composite electron transport layer (ETL) in PM6:N3-based inverted OSCs. The nonhalogenated solvent o- xylene was employed as the active layer solvent for the development of stable, efficient, and eco-friendly OSCs. By optimizing the concentration of Ti3C2Tx in the ZnO ETL, the solar cells exhibited power conversion efficiencies (PCEs) of 14.1 and 13.7% for 0.5 and 2 wt % MXene, respectively, as compared to neat ZnO layer devices with a PCE of 14.9%. Interestingly, the MXene-based PM6:N3 OSC devices showed superior device stability compared to the reference cells. It is demonstrated that the MXene introduced in the composite ZnO-based ETL mitigates the photocatalytic decomposition of the organic active layer on the ZnO surface, as analyzed via optical spectroscopy and hard X-ray photoelectron spectroscopy, which appears as a main reason for improved device stability. We thus report on the usage of MXene in green solvent-processed OSCs to enhance the lifetime of solar cells and thus address an important bottleneck in high-performance nonfullerene acceptor solar cells.
引用
收藏
页码:4549 / 4558
页数:10
相关论文
共 61 条
[11]   Slot-die processing and encapsulation of non-fullerene based ITO-free organic solar cells and modules [J].
Destouesse, E. ;
Top, M. ;
Lamminaho, J. ;
Rubahn, H-G ;
Fahlteich, J. ;
Madsen, M. .
FLEXIBLE AND PRINTED ELECTRONICS, 2019, 4 (04)
[12]  
Eberhardt, NUCL INSTRUM METHODS
[13]   Over 12% Efficiency Nonfullerene All-Small-Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies [J].
Gao, Ke ;
Jo, Sae Byeok ;
Shi, Xueliang ;
Nian, Li ;
Zhang, Ming ;
Kan, Yuanyuan ;
Lin, Francis ;
Kan, Bin ;
Xu, Bo ;
Rong, Qikun ;
Shui, Lingling ;
Liu, Feng ;
Peng, Xiaobin ;
Zhou, Guofu ;
Cao, Yong ;
Jen, Alex K. -Y. .
ADVANCED MATERIALS, 2019, 31 (12)
[14]  
Gao W., ADV MATER, V2022
[15]   Scalable fabrication of organic solar cells based on non-fullerene acceptors [J].
Gertsen, Anders S. ;
Castro, Marcial Fernandez ;
Sondergaard, Roar R. ;
Andreasen, Jens W. .
FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (01)
[16]   Degradation Behavior of Scalable Nonfullerene Organic Solar Cells Assessed by Outdoor and Indoor ISOS Stability Protocols [J].
Greenbank, William ;
Djeddaoui, Naas ;
Destouesse, Elodie ;
Lamminaho, Jani ;
Prete, Michela ;
Boukezzi, Larbi ;
Ebel, Thomas ;
Bessissa, Lakhdar ;
Rubahn, Horst-Gunter ;
Turkovic, Vida ;
Madsen, Morten .
ENERGY TECHNOLOGY, 2020, 8 (12)
[17]   Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics [J].
He, Chengliang ;
Pan, Youwen ;
Ouyang, Yanni ;
Shen, Qing ;
Gao, Yuan ;
Yan, Kangrong ;
Fang, Jin ;
Chen, Yiyao ;
Ma, Chang-Qi ;
Min, Jie ;
Zhang, Chunfeng ;
Zuo, Lijian ;
Chen, Hongzheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (06) :2537-2544
[18]   Modifying the nanostructures of PEDOT:PSS/Ti3C2TX composite hole transport layers for highly efficient polymer solar cells [J].
Hou, Chunli ;
Yu, Huangzhong .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (12) :4169-4180
[19]   A critical review on semitransparent organic solar cells [J].
Hu, Zhenghao ;
Wang, Jian ;
Ma, Xiaoling ;
Gao, Jinhua ;
Xu, Chunyu ;
Yang, Kaixuan ;
Wang, Zhi ;
Zhang, Jian ;
Zhang, Fujun .
NANO ENERGY, 2020, 78
[20]   Green solvent-processed organic solar cells based on a low cost polymer donor and a small molecule acceptor [J].
Huang, He ;
Li, Xiaojun ;
Sun, Chenkai ;
Angunawela, Indunil ;
Qiu, Beibei ;
Du, Jiaqi ;
Qin, Shucheng ;
Meng, Lei ;
Zhang, Zhanjun ;
Ade, Harald ;
Li, Yongfang .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (23) :7718-7724