Genome-Wide Identification and Expression Analysis of the TIR-NBS-LRR Gene Family and Its Response to Fungal Disease in Rose (Rosa chinensis)

被引:5
|
作者
Song, Jurong [1 ]
Chen, Feng [1 ]
Lv, Bo [1 ]
Guo, Cong [1 ]
Yang, Jie [1 ]
Huang, Li [1 ]
Guo, Jiaqi [1 ]
Xiang, Fayun [1 ]
机构
[1] Hubei Acad Agr Sci, Ind Crops Inst, Wuhan 430070, Peoples R China
来源
BIOLOGY-BASEL | 2023年 / 12卷 / 03期
基金
中国博士后科学基金;
关键词
rose; TIR-NBS-LRR; fungal disease; black spot pathogen; resistance gene; PATHOGEN EFFECTORS; RESISTANCE GENE; DIPLOCARPON-ROSAE; PLANT; PROTEIN; OVEREXPRESSION; DOMAIN; ASSOCIATION; ARABIDOPSIS; ACTIVATION;
D O I
10.3390/biology12030426
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple Summary TIR-NBS-LRR (TNL) is a disease resistance gene family that responds to biotic stress in many plants, but the systematic analysis of this gene family and the expression response to biotic stress have rarely been reported in roses. In the present study, 96 intact TNL gene family members were identified by bioinformatics in Rosa chinensis, and analyzed from the perspectives of evolutionary relationships, conserved structures, expression regulation, collinear relationships, and expression patterns. Some of the TNL genes responded to hormones and fungal disease: RcTNL23 demonstrated strong responses to three hormones and three pathogens. In addition, some TNL genes responded significantly to the black spot pathogen that we isolated, and different members may be involved in different stages of disease defense. In conclusion, we found that the TNL gene family is involved in the response to fungal disease and may function as a disease resistance gene in the rose. The present study lays a theoretical foundation for the functional study of TNL genes and the mining of disease resistance gene in roses, which will inform the selection and breeding of disease-resistant varieties. Roses, which are one of the world's most important ornamental plants, are often damaged by pathogens, resulting in serious economic losses. As a subclass of the disease resistance gene family of plant nucleotide-binding oligomerization domain (NOD)-like receptors, TIR-NBS-LRR (TNL) genes play a vital role in identifying pathogen effectors and activating defense responses. However, a systematic analysis of the TNL gene family is rarely reported in roses. Herein, 96 intact TNL genes were identified in Rosa chinensis. Their phylogenies, physicochemical characteristics, gene structures, conserved domains and motifs, promoter cis-elements, microRNA binding sites, and intra- and interspecific collinearity relationships were analyzed. An expression analysis using transcriptome data revealed that RcTNL genes were dominantly expressed in leaves. Some RcTNL genes responded to gibberellin, jasmonic acid, salicylic acid, Botrytis cinerea, Podosphaera pannosa, and Marssonina rosae (M. rosae); the RcTNL23 gene responded significantly to three hormones and three pathogens, and exhibited an upregulated expression. Furthermore, the black spot pathogen was identified as M. rosae. After inoculating rose leaves, an expression pattern analysis of the RcTNL genes suggested that they act during different periods of pathogen infection. The present study lays the foundations for an in-depth investigation of the TNL gene function and the mining of disease resistance genes in roses.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Genome-Wide Identification and Expression Analysis of Polygalacturonase Gene Family in Kiwifruit (Actinidia chinensis) during Fruit Softening
    Huang, Wenjun
    Chen, Meiyan
    Zhao, Tingting
    Han, Fei
    Zhang, Qi
    Liu, Xiaoli
    Jiang, Changying
    Zhong, Caihong
    PLANTS-BASEL, 2020, 9 (03):
  • [42] Genome-wide identification and comparative analysis of NBS-LRR resistance genes in Brassica napus
    Alamery, Salman
    Tirnaz, Soodeh
    Bayer, Philipp
    Tollenaere, Reece
    Chaloub, Boulos
    Edwards, David
    Batley, Jacqueline
    CROP & PASTURE SCIENCE, 2018, 69 (01): : 79 - 93
  • [43] Genome-Wide identification, phylogenetic analysis, and expression of CONSTANS-Like genes in Rosa chinensis in response to Tetranychus urticae infestation
    Yang, Yingjie
    Tian, Min
    Shi, Ziming
    Zhao, Peifei
    Cai, Yanfei
    PLANT STRESS, 2025, 15
  • [44] Genome-Wide Characterization and Expression Profiling of NBS-LRR-Encoding Gene Family in Radish (Raphanus sativus L.)
    Xu, Liang
    Zhang, Wei
    Tang, Mingjia
    Zhang, Xiaoli
    Wang, Juanjuan
    Wang, Yan
    Liu, Liwang
    HORTICULTURAE, 2022, 8 (12)
  • [45] GENOME-WIDE IDENTIFICATION AND EXPRESSION ANALYSIS OF AAO GENE FAMILY IN MAIZE
    Wu, De-Gong
    Wang, Yong
    Huang, Shou-Cheng
    Zhan, Qiu-Wen
    Yu, Hai-Bing
    Hunag, Bao-Hong
    Cheng, Xin-Xin
    Li, Wen-Yang
    Du, Jun-Li
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (01) : 181 - 190
  • [46] Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat
    Yanlin Yang
    Tian Xu
    Honggang Wang
    Deshun Feng
    Molecular Biology Reports, 2021, 48 : 1269 - 1279
  • [47] Genome-wide identification and expression analysis of the expansin gene family in tomato
    Yongen Lu
    Lifeng Liu
    Xin Wang
    Zhihui Han
    Bo Ouyang
    Junhong Zhang
    Hanxia Li
    Molecular Genetics and Genomics, 2016, 291 : 597 - 608
  • [48] Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava
    Wei, Yunxie
    Shi, Haitao
    Xia, Zhiqiang
    Tie, Weiwei
    Ding, Zehong
    Yan, Yan
    Wang, Wenquan
    Hu, Wei
    Li, Kaimian
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [49] Genome-Wide Identification and Expression Analysis of FD Gene Family in Bamboos
    Hou, Lihan
    Zhang, Huiting
    Fan, Yakun
    Zhang, Yaling
    Zhang, Wengen
    Yang, Guangyao
    Guo, Chunce
    Wang, Meixia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)
  • [50] Genome-Wide Identification and Expression Analysis of SNAP Gene Family in Wheat
    Zhang, Xiaohan
    Yu, Yanan
    Sun, Yumeng
    Bai, Yan
    Shu, Yongjun
    Guo, Changhong
    GENES, 2024, 15 (10)