Relativistic spacetimes admitting almost Schouten solitons

被引:5
作者
De, Uday Chand [1 ]
Sardar, Arpan [2 ]
Mofarreh, Fatemah [3 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
[2] Univ Kalyani, Dept Math, Nadia 741235, W Bengal, India
[3] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, Riyadh 11546, Saudi Arabia
关键词
Generalized Robertson-Walker spacetimes; GRW spacetimes; perfect fluid spacetimes; almost Schouten solitons; solitons;
D O I
10.1142/S0219887823501475
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate almost Schouten solitons and almost gradient Schouten solitons in spacetimes of general relativity. At first, it is proven that if a generalized Robertson-Walker spacetime permits an almost Schouten soliton, then it becomes a perfect fluid spacetime as well as the spacetime represents a dark matter era. Besides this, we investigate almost gradient Schouten solitons in generalized Robertson-Walker spacetimes. Moreover, a spacetime obeying almost Schouten solitons whose potential vector field is a non-homothetic conformal vector field is of Petrov type O or N.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
Alias L., 1995, Geometry and Topology of Submanifolds VII, P67
[2]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[3]   Gradient solitons on statistical manifolds [J].
Blaga, Adara M. ;
Chen, Bang-Yen .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 164
[4]   SOLITONS AND GEOMETRICAL STRUCTURES IN A PERFECT FLUID SPACETIME [J].
Blaga, Adara M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (01) :41-53
[5]   On complete gradient Schouten solitons [J].
Borges, Valter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
[6]   Gradient Einstein solitons [J].
Catino, Giovanni ;
Mazzieri, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :66-94
[7]   Cosmology with a stiff matter era [J].
Chavanis, Pierre-Henri .
PHYSICAL REVIEW D, 2015, 92 (10)
[8]   Yamabe and Quasi-Yamabe Solitons on Euclidean Submanifolds [J].
Chen, Bang-Yen ;
Deshmukh, Sharief .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (05)
[9]  
Chen BY, 2017, KRAGUJEV J MATH, V41, P239, DOI 10.5937/KgJMath1702239C
[10]   A simple characterization of generalized Robertson-Walker spacetimes [J].
Chen, Bang-Yen .
GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (12)