Instance Segmentation with BoundaryNet

被引:0
作者
Boyadzhiev, Teodor [1 ,2 ]
Ivanova, Krassimira [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[2] Univ Lib Studies & Informat Technol, Sofia, Bulgaria
来源
COMBINATORIAL IMAGE ANALYSIS, IWCIA 2022 | 2023年 / 13348卷
关键词
Instance segmentation; Deep learning; BoundaryNet;
D O I
10.1007/978-3-031-23612-9_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Instance segmentation is one of the key technology in many domains, such as medical image analysis, traffic and critical infrastructures monitoring, understanding of natural scenes. Recent methods for instance segmentation rely on bounding box regression, however the bounding boxes are not a natural representation for many domains. We address the limitations of the bounding boxes with a new approach called BoundaryNet, in which we train a fully convolutional neural network to draw the boundaries around each object of each class. The boundaries allow for an easy bounding box and mask inference while still providing detailed information about the shape of the object. BoundaryNet avoids the restrictions of YOLO such as the number of bounding boxes, while it is more computationally efficient than the R-CNN methods. The conducted experiments with the proposed neural network architecture BoundaryNet on the Common Object in Context (COCO) dataset show promising results in improving the instance segmentation process.
引用
收藏
页码:260 / 269
页数:10
相关论文
共 24 条
[1]   Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey [J].
Altini, Nicola ;
Prencipe, Berardino ;
Cascarano, Giacomo Donato ;
Brunetti, Antonio ;
Brunetti, Gioacchino ;
Triggiani, Vito ;
Carnimeo, Leonarda ;
Marino, Francescomaria ;
Guerriero, Andrea ;
Villani, Laura ;
Scardapane, Arnaldo ;
Bevilacqua, Vitoantonio .
NEUROCOMPUTING, 2022, 490 :30-53
[2]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[3]  
Dhyakesh S., 2021, EAI/Springer Innovations in Communication and Computing, P301, DOI [10.1007/978-3-030-47560-424, DOI 10.1007/978-3-030-47560-424]
[4]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[5]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[6]   Mesh R-CNN [J].
Gkioxari, Georgia ;
Malik, Jitendra ;
Johnson, Justin .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9784-9794
[7]  
Glorot X., 2010, P 13 INT C ARTIFICIA, P249
[8]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[9]   Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images [J].
Hou, Le ;
Vu Nguyen ;
Kanevsky, Ariel B. ;
Samaras, Dimitris ;
Kurc, Tahsin M. ;
Zhao, Tianhao ;
Gupta, Rajarsi R. ;
Gao, Yi ;
Chen, Wenjin ;
Foran, David ;
Saltz, Joel H. .
PATTERN RECOGNITION, 2019, 86 :188-200
[10]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007