Prediction Models for Knee Osteoarthritis: Review of Current Models and Future Directions

被引:13
作者
Ramazanian, Taghi [1 ]
Fu, Sunyang [1 ]
Sohn, Sunghwan [1 ]
Taunton, Michael J.
Kremers, Hilal Maradit [1 ,2 ]
机构
[1] Res performed Mayo Clin, Rochester, MN USA
[2] Mayo Clin, Dept Hlth Sci Res, 200 First St SW, Rochester, MN 55902 USA
来源
ARCHIVES OF BONE AND JOINT SURGERY-ABJS | 2023年 / 11卷 / 01期
关键词
Artificial intelligence; Knee osteoarthritis; Machine learning; Prediction models; RADIOGRAPHIC OSTEOARTHRITIS; SYMPTOMATIC OSTEOARTHRITIS; OARSI RECOMMENDATIONS; PROGRESSION; RISK; HIP; MANAGEMENT; PAIN; PREVALENCE; OVERWEIGHT;
D O I
10.22038/ABJS.2022.58485.2897
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: Knee osteoarthritis (OA) is a prevalent joint disease. Clinical prediction models consider a wide range of risk factors for knee OA. This review aimed to evaluate published prediction models for knee OA and identify opportunities for future model development.Methods: We searched Scopus, PubMed, and Google Scholar using the terms knee osteoarthritis, prediction model, deep learning, and machine learning. All the identified articles were reviewed by one of the researchers and we recorded information on methodological characteristics and findings. We only included articles that were published after 2000 and reported a knee OA incidence or progression prediction model.Results: We identified 26 models of which 16 employed traditional regression-based models and 10 machine learning (ML) models. Four traditional and five ML models relied on data from the Osteoarthritis Initiative. There was significant variation in the number and type of risk factors. The median sample size for traditional and ML models was 780 and 295, respectively. The reported Area Under the Curve (AUC) ranged between 0.6 and 1.0. Regarding external validation, 6 of the 16 traditional models and only 1 of the 10 ML models validated their results in an external data set.Conclusion: Diverse use of knee OA risk factors, small, non-representative cohorts, and use of magnetic resonance imaging which is not a routine evaluation tool of knee OA in daily clinical practice are some of the main limitations of current knee OA prediction models.Level of evidence: III
引用
收藏
页码:1 / 10
页数:10
相关论文
共 59 条
[21]   Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort [J].
Kinds, M. B. ;
Marijnissen, A. C. A. ;
Vincken, K. L. ;
Viergever, M. A. ;
Drossaers-Bakker, K. W. ;
Bijlsma, J. W. J. ;
Bierma-Zeinstra, S. M. A. ;
Welsing, P. M. J. ;
Lafeber, F. P. J. G. .
OSTEOARTHRITIS AND CARTILAGE, 2012, 20 (06) :548-556
[22]   Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium [J].
Kraus, Virginia Byers ;
Collins, Jamie E. ;
Hargrove, David ;
Losina, Elena ;
Nevitt, Michael ;
Katz, Jeffrey N. ;
Wang, Susanne X. ;
Sandell, Linda J. ;
Hoffmann, Steven C. ;
Hunter, David J. .
ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 (01) :186-195
[23]   Predicting Knee Pain and Knee Osteoarthritis Among Overweight Women [J].
Landsmeer, Marieke L. A. ;
Runhaar, Jos ;
van Middelkoop, Marienke ;
Oei, Edwin H. G. ;
Schiphof, Dieuwke ;
Bindels, Patrick J. E. ;
Bierma-Zeinstra, Sita M. A. .
JOURNAL OF THE AMERICAN BOARD OF FAMILY MEDICINE, 2019, 32 (04) :575-584
[24]   Development of a clinical prediction algorithm for knee osteoarthritis structural progression in a cohort study: value of adding measurement of subchondral bone density [J].
LaValley, Michael P. ;
Lo, Grace H. ;
Price, Lori Lyn ;
Driban, Jeffrey B. ;
Eaton, Charles B. ;
McAlindon, Timothy E. .
ARTHRITIS RESEARCH & THERAPY, 2017, 19
[25]  
Lawrence RC, 2008, ARTHRITIS RHEUM, V58, P26, DOI 10.1002/art.23176
[26]   A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women [J].
Lazzarini, N. ;
Runhaar, J. ;
Bay-Jensen, A. C. ;
Thudium, C. S. ;
Bierma-Zeinstra, S. M. A. ;
Henrotin, Y. ;
Bacardit, J. .
OSTEOARTHRITIS AND CARTILAGE, 2017, 25 (12) :2014-2021
[27]   A Deep Neural Network-Based Method for Early Detection of Osteoarthritis Using Statistical Data [J].
Lim, Jihye ;
Kim, Jungyoon ;
Cheon, Songhee .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (07)
[28]   Predicting knee osteoarthritis risk in injured populations [J].
Long, Michael J. ;
Papi, Enrica ;
Duffell, Lynsey D. ;
McGregor, Alison H. .
CLINICAL BIOMECHANICS, 2017, 47 :87-95
[29]   Disease-modifying drugs for knee osteoarthritis: can they be cost-effective? [J].
Losina, E. ;
Daigle, M. E. ;
Suter, L. G. ;
Hunter, D. J. ;
Solomon, D. H. ;
Walensky, R. P. ;
Jordan, J. M. ;
Burbine, S. A. ;
Paltiel, A. D. ;
Katz, J. N. .
OSTEOARTHRITIS AND CARTILAGE, 2013, 21 (05) :655-667
[30]   Development and feasibility of a personalized, interactive risk calculator for knee osteoarthritis [J].
Losina, Elena ;
Klara, Kristina ;
Michl, Griffin L. ;
Collins, Jamie E. ;
Katz, Jeffrey N. .
BMC MUSCULOSKELETAL DISORDERS, 2015, 16