A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries

被引:45
作者
Yang, Qi [1 ,2 ]
Deng, Nanping [1 ,2 ]
Zhao, Yixia [1 ,2 ]
Gao, Lu [1 ,2 ]
Cheng, Bowen [1 ]
Kang, Weimin [1 ,2 ]
机构
[1] Tiangong Univ, Natl Ctr Int Joint Res Separat Membranes, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
One-dimensional materials; All; -solid-state; Lithium -ion batteries; Lithium -sulfur batteries; Preparation methods; Electrolytes and electrodes; COMPOSITE POLYMER ELECTROLYTES; MECHANICAL-PROPERTIES; CERAMIC NANOWIRES; ALUMINA NANORODS; ANGLE DEPOSITION; THIN-FILMS; CONDUCTIVITY; OXIDE; PERFORMANCE; NANOFIBERS;
D O I
10.1016/j.cej.2022.138532
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Replacing liquid electrolytes with all-solid-state electrolytes has emerged as one of the most promising approaches to address the safety issues and energy degradation in lithium-ion batteries and lithium-sulfur batteries. However, all-solid-state electrolytes will bring problems such as unsatisfactory ionic conductivity and large interfacial impedance between electrolyte and electrodes. One-dimensional (1D) materials have excellent effects on the enhancement of the ionic conductivity of electrolyte and the improvement of the interfacial contact between electrolytes and electrodes and the solution of other problems of all-solid-state lithium-ion batteries (ASSLIBs) and all-solid-state lithium-sulfur batteries (ASSLSBs). In this review, an extensive generalization about the preparation methods of 1D materials including electrospinning method, hydrothermal method, physical vapor deposition, calcination method and their combinations for electrolytes and electrodes are presented. For ASSLIBs, 1D inorganic (including Al2O3, SiO2, TiO2, perovskite ceramics and garnet ceramics) and organic materials (such as PVDF and PEO et al.) are revealed to improve ionic conductivity and reduce lithium dendrite growth in electrolytes and increase electrode-electrolyte contact area in electrodes. Especially for ASSLSBs, the suppression of the "shuttle effect" of polysulfides, the inhibition of lithium dendrite and the settlement to the problems resulted from the non-conductivity and volume expansion of sulfur by 1D materials are also described in detail. In addition, the mechanism of action of 1D materials in both ASSLIBs and ASSLSBs is described. Finally, we conclude with an outlook section to provide some insights on the future prospects of 1D materials in ASSLIBs and ASSLSBs. These discussions and proposed recommendations will offer more approaches to the practical application ASSLIBs and ASSLSBs with high electrochemical performance and safety in the future.
引用
收藏
页数:18
相关论文
共 114 条
[1]   Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries [J].
Aldalur, Itziar ;
Wang, Xiaoen ;
Santiago, Alexander ;
Goujon, Nicolas ;
Echeverria, Maria ;
Martinez-Ibanez, Maria ;
Piszcz, Michal ;
Howlett, Patrick C. ;
Forsyth, Maria ;
Armand, Michel ;
Zhang, Heng .
JOURNAL OF POWER SOURCES, 2020, 448
[2]   Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries [J].
Banitaba, Seyedeh Nooshin ;
Semnani, Dariush ;
Heydari-Soureshjani, Elahe ;
Rezaei, Behzad ;
Ensafi, Ali A. .
MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
[3]   Perspectives on oblique angle deposition of thin films: From fundamentals to devices [J].
Barranco, Angel ;
Borras, Ana ;
Gonzalez-Elipe, Agustin R. ;
Palmero, Alberto .
PROGRESS IN MATERIALS SCIENCE, 2016, 76 :59-153
[4]   A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries [J].
Bi, Jiaying ;
Mu, Daobin ;
Wu, Borong ;
Fu, Jiale ;
Yang, Hao ;
Mu, Ge ;
Zhang, Ling ;
Wu, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) :706-713
[5]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[6]   Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte [J].
Chen, Long ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2018, 15 :37-45
[7]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[8]   Solid Polymer Electrolytes with Flexible Framework of SiO2Nanofibers for Highly Safe Solid Lithium Batteries [J].
Cui, Jin ;
Zhou, Zehao ;
Jia, Mengyang ;
Chen, Xin ;
Shi, Chuan ;
Zhao, Ning ;
Guo, Xiangxin .
POLYMERS, 2020, 12 (06)
[9]   Fabrication of ultra-thin, flexible, dendrite-free, robust and nanostructured solid electrolyte membranes for solid-state Li-batteries [J].
Dubey, Brahma Prakash ;
Sahoo, Asit ;
Thangadurai, Venkataraman ;
Sharma, Yogesh .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (22) :12196-12212
[10]   Versatile Strategy for Realizing Flexible Room-Temperature All-Solid-State Battery through a Synergistic Combination of Salt Affluent PEO and Li6.75La3Zr1.75Ta0.25O12 Nanofibers [J].
Fan, Rong ;
Liu, Chen ;
He, Kangqiang ;
Cheng, Samson Ho-Sum ;
Chen, Dazhu ;
Liao, Chengzhu ;
Li, Robert K. Y. ;
Tang, Jiaoning ;
Lu, Zhouguang .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) :7222-7231