A Weighted Average Finite Difference Scheme for the Numerical Solution of Stochastic Parabolic Partial Differential Equations

被引:0
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Namjoo, Mehran [4 ]
Mohebbian, Ali [4 ]
Jajarmi, Amin [5 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele 76900, Romania
[3] China Med Univ Hosp, China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Vali Asr Univ Rafsanjan, Dept Math, Rafsanjan 7718897111, Iran
[5] Univ Bojnord, Dept Elect Engn, Bojnord 945311339, Iran
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2023年 / 135卷 / 02期
关键词
Ito equation; stochastic process; finite difference scheme; stability and convergence; consistency; APPROXIMATION; CONVERGENCE; STABILITY;
D O I
10.32604/cmes.2022.022403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present paper, the numerical solution of Ito type stochastic parabolic equation with a time white noise process is imparted based on a stochastic finite difference scheme. At the beginning, an implicit stochastic finite difference scheme is presented for this equation. Some mathematical analyses of the scheme are then discussed. Lastly, to ascertain the efficacy and accuracy of the suggested technique, the numerical results are discussed and compared with the exact solution.
引用
收藏
页码:1147 / 1163
页数:17
相关论文
共 23 条
[1]   Spectral collocation method for stochastic partial differential equations with fractional Brownian motion [J].
Arezoomandan, Mahdieh ;
Soheili, Ali R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
[2]  
Bishehniasar M, 2013, IRAN J SCI TECHNOL A, V37, P327
[3]  
Dawson D.A., 1999, STOCHASTIC PARTIAL D, V64, P45, DOI DOI 10.1090/SURV/064/02
[4]   Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models [J].
Guo, Ling ;
Wu, Hao ;
Zhou, Tao .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 461
[5]   Spectral collocation method for stochastic Burgers equation driven by additive noise [J].
Kamrani, Minoo ;
Hosseini, S. Mohammad .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (09) :1630-1644
[6]   The role of coefficients of a general SPDE on the stability and convergence of a finite difference method [J].
Kamrani, Minoo ;
Hosseini, S. Mohammad .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) :1426-1434
[7]   An adaptive wavelet optimized finite difference B-spline polynomial chaos method for random partial differential equations [J].
Kaur, Navjot ;
Goyal, Kavita .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 415
[8]  
Kloeden P.E., 1999, Numerical Solution of Stochastic Differential Equations
[9]   Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation [J].
Liu, Yang ;
Du, Yanwei ;
Li, Hong ;
Liu, Fawang ;
Wang, Yajun .
NUMERICAL ALGORITHMS, 2019, 80 (02) :533-555
[10]   Stochastic Navier-Stokes equations for turbulent flows [J].
Mikulevicius, R ;
Rozovskii, BL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) :1250-1310