A posteriori error estimation for model order reduction of parametric systems

被引:1
作者
Feng, Lihong [1 ]
Chellappa, Sridhar [1 ]
Benner, Peter [1 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, Sandtorstr 1, D-39106 Magdeburg, Germany
关键词
A posteriori error estimation; Parametric systems; Model order reduction; REDUCED BASIS APPROXIMATION; BOUNDS; OPTIMIZATION; ALGORITHM;
D O I
10.1186/s40323-024-00260-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This survey discusses a posteriori error estimation for model order reduction of parametric systems, including linear and nonlinear, time-dependent and steady systems. We focus on introducing the error estimators we have proposed in the past few years and comparing them with the most related error estimators from the literature. For a clearer comparison, we have translated some existing error bounds proposed in function spaces into the vector space Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}<^>n$$\end{document} and provide the corresponding proofs in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C<^>n$$\end{document}. Some new insights into our proposed error estimators are explored. Moreover, we review our newly proposed error estimator for nonlinear time-evolution systems, which is applicable to reduced-order models solved by arbitrary time-integration solvers. Our recent work on multi-fidelity error estimation is also briefly discussed. Finally, we derive a new inf-sup-constant-free output error estimator for nonlinear time-evolution systems. Numerical results for three examples show the robustness of the new error estimator.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Adaptive parametric sampling scheme for nonlinear model order reduction
    Danish Rafiq
    Mohammad Abid Bazaz
    Nonlinear Dynamics, 2022, 107 : 813 - 828
  • [32] Error estimation of the parametric non-intrusive reduced order model using machine learning
    Xiao, D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 513 - 534
  • [33] Parametric Model-Order Reduction of Hierarchical Self-Optimizing Systems
    Krueger, Martin
    Traechtler, Ansgar
    AT-AUTOMATISIERUNGSTECHNIK, 2015, 63 (08) : 633 - 645
  • [34] A posteriori error estimation for isogeometric analysis using the concept of Constitutive Relation Error
    Thai, H. P.
    Chamoin, L.
    Ha-Minh, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 1062 - 1096
  • [35] Model order reduction with parametric port formulation
    Ma, Min
    Khazaka, Roni
    IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2007, 30 (04): : 763 - 775
  • [36] Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements
    Guillermo Hauke
    Mohamed H. Doweidar
    Daniel Fuster
    Antonio Gómez
    Javier Sayas
    Computational Mechanics, 2006, 38 : 382 - 389
  • [37] A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements
    Ainsworth, Mark
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) : 189 - 204
  • [38] Application of variational a-posteriori multiscale error estimation to higher-order elements
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Fuster, Daniel
    Gomez, Antonio
    Sayas, Javier
    COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 382 - 389
  • [39] SOME A POSTERIORI ERROR BOUNDS FOR REDUCED-ORDER MODELLING OF (NON-)PARAMETRIZED LINEAR SYSTEMS
    Feng, Lihong
    Antoulas, Athanasios C.
    Benner, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (06): : 2127 - 2158
  • [40] A posteriori error estimation and adaptive strategy for the control of MsFEM computations
    Chamoin, Ludovic
    Legoll, Frederic
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 336 : 1 - 38