Leavitt Path Algebras in Which Every Lie Ideal is an Ideal and Applications

被引:0
作者
Khanh, Huynh Viet [1 ]
机构
[1] HCMC Univ Educ, Dept Math & Informat, 280 Duong Vuong Str,Dist 5, Ho Chi Minh City, Vietnam
关键词
Leavitt path algebra; Lie algebra; Locally solvable radical; Semisimple Lie algebra; SIMPLICITY;
D O I
10.1007/s00031-024-09848-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify all Leavitt path algebras which have the property that every Lie ideal is an ideal. As an application, we show that Leavitt path algebras with this property provide a class of locally finite, infinite-dimensional Lie algebras whose locally solvable radical is completely determined. This particularly gives us a new class of semisimple Lie algebras over a field of prime characteristic.
引用
收藏
页数:17
相关论文
共 12 条
  • [1] Locally finite Leavitt path algebras
    Abrams, G.
    Pino, G. Aranda
    Molina, M. Siles
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2008, 165 (01) : 329 - 348
  • [2] The Leavitt path algebra of a graph
    Abrams, G
    Pino, GA
    [J]. JOURNAL OF ALGEBRA, 2005, 293 (02) : 319 - 334
  • [3] Abrams G, 2017, LECT NOTES MATH, V2191, P1, DOI 10.1007/978-1-4471-7344-1
  • [4] Simple Lie algebras arising from Leavitt path algebras
    Abrams, Gene
    Mesyan, Zachary
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (10) : 2302 - 2313
  • [5] SIMPLICITY OF THE LIE ALGEBRA OF SKEW SYMMETRIC ELEMENTS OF A LEAVITT PATH ALGEBRA
    Alahmedi, Adel
    Alsulami, Hamed
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3182 - 3190
  • [6] On the Simplicity of the Lie Algebra of a Leavitt Path Algebra
    Alahmedi, Adel
    Alsulami, Hamed
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (09) : 4114 - 4120
  • [7] Nonstable K-theory for graph algebras
    Ara, P.
    Moreno, M. A.
    Pardo, E.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) : 157 - 178
  • [8] Pino GA, 2011, REV MAT IBEROAM, V27, P621
  • [9] Commutator Leavitt Path Algebras
    Mesyan, Zachary
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1207 - 1232
  • [10] Penkov I., 2022, Classical Lie algebras at infinity, DOI [10.1007/978-3-030-89660-7, DOI 10.1007/978-3-030-89660-7]