A posteriori error analysis of an ultra-weak local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems

被引:0
|
作者
Baccouch, Mahboub [1 ]
机构
[1] Univ Nebraska Omaha, Dept Math, Omaha, NE 68182 USA
关键词
Nonlinear fourth-order boundary-value problems; Ultra-weak local discontinuous Galerkin method; Superconvergence; A posteriori error estimation; Adaptive mesh refinement; FINITE-ELEMENT-METHOD; DIFFERENTIAL-EQUATIONS; SUPERCONVERGENCE;
D O I
10.1007/s11075-024-01773-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present and analyze a posteriori error estimates for the ultra-weak local discontinuous Galerkin (UWLDG) method applied to nonlinear fourth-order boundary-value problems for ordinary differential equations of the form -u(4)=f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-u<^>{(4)}=f(x,u)$$\end{document}. Building upon the superconvergence results established in Baccouch (Numer Algor 92(4):1983-2023, 2023), we demonstrate the convergence of the UWLDG solution, in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm, towards a special p-degree interpolating polynomial when piecewise polynomials of degree at most p >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document} are employed. The convergence order is proven to be p+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. Additionally, we decompose the UWLDG error on each element into two components. The dominant component is proportional to a special (p+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p+1)$$\end{document}-degree polynomial, represented as a linear combination of Legendre polynomials with degrees p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-1$$\end{document}, p, and p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}. The second component converges to zero with an order of p+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document} in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm. These findings enable the construction of computationally efficient a posteriori error estimates for the UWLDG method. These estimates are obtained by solving a local problem on each element without imposing boundary conditions. Furthermore, we establish that, for smooth solutions, these a posteriori error estimates converge to the exact errors in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm as the mesh is refined, with a convergence order of p+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. In addition, we prove that the global effectivity index converges to unity at a rate of O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(h)$$\end{document}. Finally, we present a local AMR procedure that makes use of our local and global a posteriori error estimates. Numerical results are provided to illustrate the reliability and efficiency of the proposed error estimator.
引用
收藏
页码:1895 / 1933
页数:39
相关论文
共 50 条