Clustering Sparse Swarm Decomposition for Automated Recognition of Upper Limb Movements From Nonhomogeneous Cross-Channel EEG Signals

被引:17
作者
Bhalerao, Shailesh Vitthalrao [1 ]
Pachori, Ram Bilas [2 ]
机构
[1] Indian Inst Technol Indore, Dept Biosci & Biomed Engn, Indore 453552, India
[2] Indian Inst Technol Indore, Dept Elect Engn, Indore 453552, India
关键词
Sensor signal processing; brain-computer interface (BCI); clustering sparse swarm decomposition method (CSSDM); motor imagery (MI); multichannel nonhomogeneous electroencephalogram (EEG); upper limb movements recognition; PATTERNS;
D O I
10.1109/LSENS.2023.3347626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Decoding motor imagery electroencephalogram (MI-EEG)-based upper limb movements become a prominent tool to people with neuromuscular diseases. In this letter, the clustering sparse swarm decomposition method (CSSDM) is proposed to extract homogeneous spectral characteristics across nonhomogeneous multichannel MI-EEG sensor data with significant channel selection for improving decomposition and enhancing the performance of automatic upper limb movement recognition. CSSDM, a novel approach proposed to address the limitation of processing nonhomogeneous signals, such as EEG, extends the capabilities of existing swarm decomposition. In CSSDM, first, the nonhomogeneous EEG signal is analyzed by a density-based spatial clustering algorithm based on canonical correlation analysis-mutual information measure into homogeneous EEG clusters. The CSSDM adopts modified swarm filtering and sparse spectrum to automatically deliver into optimal band-limited modes, which shows the mutual characteristics across channels. Further, the time-frequency graph spectral features are extracted from CSSDM modes. The experimental results on the 7-class BNCI EEG (001-2017) database reveal that CSSDM-based classification frameworks outperformed all baseline models and achieved the highest accuracy of 49.02 +/- 0.61% using tenfold cross-validation.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 15 条
[1]   Swarm decomposition: A novel signal analysis using swarm intelligence [J].
Apostolidis, Georgios K. ;
Hadjileontiadis, Leontios J. .
SIGNAL PROCESSING, 2017, 132 :40-50
[2]   Multiclass Brain-Computer Interface Classification by Riemannian Geometry [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) :920-928
[3]   Sparse spectrum based swarm decomposition for robust nonstationary signal analysis with application to sleep apnea detection from EEG [J].
Bhalerao, Shailesh Vitthalrao ;
Pachori, Ram Bilas .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
[4]   SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters [J].
Daehne, Sven ;
Meinecke, Frank C. ;
Haufe, Stefan ;
Hoehne, Johannes ;
Tangermann, Michael ;
Mueller, Klaus-Robert ;
Nikulin, Vadim V. .
NEUROIMAGE, 2014, 86 :111-122
[5]   Multiclass common spatial patterns and information theoretic feature extraction [J].
Grosse-Wentrup, Moritz ;
Buss, Martin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (08) :1991-2000
[6]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[7]   Multi-Class Classification of Upper Limb Movements With Filter Bank Task-Related Component Analysis [J].
Jia, Hao ;
Feng, Fan ;
Caiafa, Cesar F. ;
Duan, Feng ;
Zhang, Yu ;
Sun, Zhe ;
Sole-Casals, Jordi .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (08) :3867-3877
[8]   ADCN: An anisotropic density-based clustering algorithm for discovering spatial point patterns with noise [J].
Mai, Gengchen ;
Janowicz, Krzysztof ;
Hu, Yingjie ;
Gao, Song .
TRANSACTIONS IN GIS, 2018, 22 (01) :348-369
[9]   A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface [J].
Mattioli, F. ;
Porcaro, C. ;
Baldassarre, G. .
JOURNAL OF NEURAL ENGINEERING, 2021, 18 (06)
[10]   Upper limb movements can be decoded from the time-domain of low-frequency EEG [J].
Ofner, Patrick ;
Schwarz, Andreas ;
Pereira, Joana ;
Mueller-Putz, Gernot R. .
PLOS ONE, 2017, 12 (08)