SNR and Resolution Improvement Algorithm With the Concatenation of Multiple Chirps for FMCW Radar

被引:5
作者
Kim, Bong-seok [1 ]
Lee, Jonghun [1 ,2 ]
Kim, Sangdong [1 ,2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Div Automot Technol, Daegu 42988, South Korea
[2] DGIST, Dept Interdisciplinary Engn, Daegu 42988, South Korea
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 01期
基金
新加坡国家研究基金会;
关键词
Chirp; Signal resolution; Signal to noise ratio; Radar; Estimation; Bandwidth; Correlation; Concatenation; fast Fourier transform (FFT); frequency-modulated continuous-wave (FMCW); high resolution; NEURAL-NETWORK;
D O I
10.1109/LAWP.2023.3317872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes an algorithm that improves the signal-to-noise ratio (SNR) and resolution of frequency-modulated continuous-wave (FMCW) radar systems by using concatenation among multiple chirp signals. In FMCW radar systems, increasing the bandwidth is necessary to improve the range resolution. The proposed algorithm enhances the frequency estimation resolution without the use of additional bandwidth by concatenating short chirp signals to create longer signals while also improving the SNR by combining multiple chirps with different noise components. To prevent discontinuities during the concatenation process, the proposed algorithm uses cross-correlation between the end of one chirp and the beginning of another. Simulation and experimental results demonstrate the effectiveness of the proposed algorithm in improving both the SNR and resolution.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 32 条
[1]   PLASMA PRODUCTION USING RADIOFREQUENCY FIELDS NEAR OR BELOW THE ION-CYCLOTRON RANGE OF FREQUENCIES [J].
CARTER, MD ;
LYSOJVAN, AI ;
MOISEENKO, VE ;
NAZAROV, NI ;
SHVETS, OM ;
STEPANOV, KN .
NUCLEAR FUSION, 1990, 30 (04) :723-730
[2]   Study of the Influence of Time-Varying Plasma Sheath on Radar Echo Signal [J].
Chen, Xu-Yang ;
Li, Ke-Xin ;
Liu, Yan-Yan ;
Zhou, Ya-Gang ;
Li, Xiao-Ping ;
Liu, Yan-Ming .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (12) :3166-3176
[3]   A Tailored Semiphysics-Driven Artificial Neural Network for Electromagnetic Full-Wave Inversion [J].
Chen, Yanjin ;
Zhong, Miao ;
Guan, Zhen ;
Han, Feng .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (08) :6207-6217
[4]   Data-driven, multi-moment fluid modeling of Landau damping [J].
Cheng, Wenjie ;
Fu, Haiyang ;
Wang, Liang ;
Dong, Chuanfei ;
Jin, Yaqiu ;
Jiang, Mingle ;
Ma, Jiayu ;
Qin, Yilan ;
Liu, Kexin .
COMPUTER PHYSICS COMMUNICATIONS, 2023, 282
[5]  
Faroughi SA, 2023, Arxiv, DOI [arXiv:2211.07377, DOI 10.48550/ARXIV.2211.07377]
[6]   A Dielectric Parameters Reconstruction Algorithm for 2-D Plasma Media [J].
Feng, Xuejian ;
Deng, Haochuan ;
Yao, Shilei ;
Wei, Xiao ;
Yin, Hongcheng .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (09) :3294-3302
[7]   A Stimulated Emission Diagnostic Technique for Electron Temperature of the High Power Radio Wave Modified Ionosphere [J].
Fu, H. Y. ;
Jiang, M. L. ;
Vierinen, J. ;
Haggstrom, I. ;
Rietveld, M. T. ;
Varberg, E. ;
Sato, H. ;
Wu, J. ;
Scales, W. A. ;
Jin, Y. Q. .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (15)
[8]   Exploration of data-driven methods for multiphysics electromagnetic partial differential equations [J].
Fu, Haiyang ;
Cheng, Wenjie ;
Qin, Yilan .
2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
[9]   Inhomogeneous plasma electron density inversion based on Bayesian regularization neural network [J].
Gan, Liping ;
Guo, Lixin ;
Guo, Linjing ;
Li, Jiangting .
PHYSICS OF PLASMAS, 2022, 29 (01)
[10]   Electromagnetic Modeling Using an FDTD-Equivalent Recurrent Convolution Neural Network: Accurate Computing on a Deep Learning Framework. [J].
Guo, Liangshuai ;
Li, Maokun ;
Xu, Shenheng ;
Yang, Fan ;
Liu, Li .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2023, 65 (01) :93-102